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The Connectivity Indices of Regular Graphs#
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Explicit formulae for computing the first three vertex- and edge-
connectivity indices of regular graphs are given. Formulae for the
vertex- and edge-connectivity indices for 2-regular graphs, model-
ing cycles, are identical because in these graphs the adjacency pat-
terns and the numbers of vertices and edges are the same. In the
case of a 3-regular graph, e.g., that of a fullerene, the zero-order
and second-order vertex-connectivity indices coincide, and the first
three edge-connectivity indices are identical.
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INTRODUCTION

A graph G in which every vertex has the same degree (valency) is called
a regular graph.1,2 If every vertex has degree d, G is called a regular graph
of degree d or d-regular graph. Regular graphs can be used to model carbon
skeletons of many classes of molecules, e.g., cycles, Platonic and Archime-
dean molecules, fullerenes, prismane, etc. Since regular graphs (and the
carbon skeletons of the corresponding molecules) have regular structures, it
is possible to express their connectivity indices in a closed form. There are
two kinds of connectivity indices: the vertex-connectivity index and the
edge-connectivity index.
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DEFINITION OF THE VERTEX-CONNECTIVITY INDEX

The vertex-connectivity index c = c(G) of a graph G was defined by Ran-
di}3 as a bond-additive quantity:

c =
edges
� �d(vi) d(vj)�

–1/2 (1)

where d(vi) is the degree of the vertex i, while quantity �d(vi) d(vj)� can be
considered as the weight of the i-j bond.

The vertex-connectivity index can be generalized. The generalization is
accomplished by replacing the bond weights �d(vi) d(vj)� with the path
weights �d(vi) d(vj) ... d(v

l+1)�:
4

l
c =

paths
� �d(vi) d(vj) ... d(v

l+1)�–1/2 . (2)

Below we give the definitions of the lowest three vertex-connectivity in-
dices:

(i) The zero-order vertex-connectivity index 0
c

0
c =

vertices
� �d(vi)�

–1/2 . (3)

(ii) The first-order vertex-connectivity index 1
c (this index is identical to

the original Randi} index, see Eq. (1)):

1
c =

edges
� �d(vi) d(vj)�

–1/2 . (4)

(iii) The second-order vertex-connectivity index 2
c

2
c =

paths of
length two

� �d(vi) d(vj) d(vk)�–1/2 . (5)

DEFINITION OF THE EDGE-CONNECTIVITY INDEX

The edge-connectivity index e = e(G) of a graph G was introduced by Es-
trada.5 It is defined similarly to the vertex-connectivity index, but in the de-
finition appear edge-degrees d(e) instead of vertex-degrees d(v):

e =
adjacent

edges

� �d(ei) d(ej)�
–1/2 (6)

where d(ei) is the degree of the edge ei.
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Since an edge e is incident with two vertices vi and vj, an edge-degree
d(e) of e can be expressed in terms of the corresponding vertex-degrees d(vi)
and d(vj) as:

d(e) = d(vi) + d(vj) – 2 . (7)

Eq. (7) for d-regular graphs, since d(vi) = d(vj) = d(v), converts into:

d(e) = 2 �d(v) – 1� . (8)

Parallel to the handshake lemma which states that the total sum of ver-
tex-degrees equals twice the number of edges:6

i

V

�

�
1

d(vi) = 2E (9)

it is possible to derive by means of Eq. (8) a related expression for the total
sum of edge-degrees in a d-regular graph:

i

E

�

�
1

d(ei) = E d(e) = 2 E �d(v) – 1� (10)

where E is the number of edges in a graph.
The edge-connectivity index can be generalized similarly as was the ver-

tex-connectivity index:

l
e =

paths
� �d(ei) d(ej) ... d(e

l+1)�–1/2 (11)

where l is the length of a considered path.
Below we give the definitions of the lowest three edge-connectivity indi-

ces:
(i) The zero-order edge-connectivity index 0

e

0
e =

edges
� �d(ei)�

–1/2 . (12)

(ii) The first-order edge-connectivity index 1
e

1
e =

adjacent
edges

� �d(ei) d(ej)�
–1/2 . (13)

(iii) The second-order edge-connectivity index 2
e

2
e =

paths of
three edges

� �d(ei) d(ej) d(ek)�–1/2 . (14)
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THE VERTEX-CONNECTIVITY INDICES OF d-REGULAR GRAPHS

Eqs. (3)-(5) can be given in a closed form for d-regular graphs. The for-
mulae for vertex-connectivity indices of d-regular graphs can be given in
terms of only the number of vertices V and vertex degrees d(v). Note that for
regular graphs ��d(vi)� = �d(v1)� + �d(v2)� + ... + �d(vV)� = V �d(v)�.

(i) The zero-order vertex-connectivity index

0
c =

vertices
� �d(vi)�

–1/2 = V �d(v)�–1/2 = V/ �d(v)�1/2 . (15)

(ii) The first-order vertex-connectivity index

1
c =

edges
� �d(vi) d(vj)�

–1/2 = E �d(v)�–1 = V/ 2 (16)

where

E = V d(v) / 2 . (17)

Formula (16) shows that all non-isomorphic regular graphs with the sa-
me number of vertices have identical values of the first-order vertex-con-
nectivity index (or Randi} index). This was already observed by Kunz7 and
proved by Estrada.8

(iii) The second-order vertex-connectivity index

2
c =

paths of
length two

� �d(vi) d(vj) d(vk)�–1/2 =

= V d(v) �d(v) – 1� / 2 d(v) �d(v)�1/2

= V �d(v) – 1)� / 2 �d(v)�1/2 . (18)

Examples:

(1) Annulenes

Annulenes can be represented by cycles, which are 2-regular graphs,
since all vertices in a cycle have degree 2.

(i) The zero-order vertex-connectivity index

0
c = 0.7071 V . (19)

(ii) The first-order vertex-connectivity index

1
c = 0.5 V . (20)
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(iii) The second-order vertex-connectivity index

2
c = 0.3536 V . (21)

These formulas can be collected as:

l
c = d(v)–(l+1)/2 V (22)

or

l
c = 2–(l+1)/2 V (23)

where l = 0, 1,..., N–1.

(2) Fullerenes

Fullerenes can be represented by 3-regular graphs, since all vertices in
fullerenes have degree three. The characteristics of fullerene graphs are dis-
cussed, for example, in Ref. 9.

(i) The zero-order vertex-connectivity index

0
c = 0.5774 V . (24)

(ii) The first-order vertex-connectivity index

1
c = 0.5 V . (25)

(iii) The second-order vertex-connectivity index

It can be straightforwardly shown that 0
c and 2

c are identical for 3-re-
gular graphs.

0
c = 2

c = 0.5774 V . (26)

These formulas can be collected as:

l
c = d(v)–(l+1)/2 P

l
(27)

or

l
c = 3–(l+1)/2 P

l
(28)

where P
l
is the number of paths of the lenght l. Equations (27) and (28) are

valid for all l smaller than the size of the smallest ring. They are similar to
Eqs. (22) and (23), where P

l
is replaced by V because the number of paths of

any length in a cycle is equal to the number of vertices. Note that in fulle-
renes P0 = V, P1 = E and P2 = 3V.
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THE EDGE-CONNECTIVITY INDICES OF d-REGULAR GRAPHS

Eqs. (12)-(14) can also be given in terms of E and d(e) or V and d(v) pa-
rameters for d-regular graphs.

(i) The zero-order edge-connectivity index

0
e =

edges
� �d(ei)�

–1/2 = E �d(e)�–1/2 = E / �d(e)�1/2 . (29)

This expression alters by means of Eqs. (8) and (17) into somewhat less
elegant equation than one above:

0
e = V d(v) / 2�2 �d(v) – 1��1/2 . (30)

(ii) The first-order edge-connectivity index

1
e =

adjacent
edges

� �d(ei) d(ej)�
–1/2 = E �d(v) – 1� / d(e) = E/2 (31)

where Eq. (8) is utilized. Eq. (31) can also be converted by means of Eq. (17)
into one containing V and d(v):

1
e = V d(v) / 4 . (32)

Eqs. (31) shows that degeneracy of the first-order edge-connectivity in-
dex will appear for regular graphs with identical number of edges.

(iii) The second-order edge-connectivity index

2
e =

path of
three edges

� �d(ei) d(ej) d(ek)�–1/2 = P3 / d(e) �d(e)�1/2 (33)

or

2
e = P3 / 2 �d(v) – 1� �2�d(v) – 1��1/2 (34)

where P3 is the number of paths consisting of three edges.
The P3-values can be calculated from the formula:

P3 = E �d(e) / 2�2 – 3 C3

= V d(v) �d(v) – 1�2 / 2 – 3 C3 (35)

where C3 stands for the number of three-membered cycles in d-regular
graphs. For example, in the case of the tetrahedral graph (representing the
tetrahedron and possessing 4 C3-cycles) there are 12 distinct P3 paths.10
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Examples:

(1) Annulenes

The edge-degrees in annulenes are equal to 2.

(i) The zero-order edge-connectivity index

0
e = 0.7071 E . (36)

This index is identical to the zero-order vertex-connectivity index, be-
cause in cycles V = E and d(v) = d(e).

(ii) The first-order edge-connectivity index

1
e = 0.5 E . (37)

This index is obviously identical to the first-order vertex-connectivity in-
dex.

(iii) The second-order edge-connectivity index

2
e = 0.3536 E . (38)

Note that in cycles CV, P3 = the size of the cycle, V. Since for cycles E = V,
Eqs. (21) and (38) are identical. Therefore, for annulenes the vertex- and the
edge-connectivity indices are identical. This is an extension of the result that
was also established by Estrada8 for the first-order vertex-connectivity index.

Therefore, in general l
e for annulenes can be also computed by means of

Eq. (23).

(2) Fullerenes

The edge-degrees in fullerenes are equal to 4.

(i) The zero-order edge-connectivity index

0
e = 0.5 E (39)

or
0
e = 0.75 V . (40)

Note that in fullerenes E = 3 V/2. Eqs. (24) and (40) show that the zero-
order vertex-connectivity index and the zero-order edge-connectivity index
do not coincide for a fullerene.

(ii) The first-order edge-connectivity index

1
e = 0.5 E (41)
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or
1
e = 0.75 V . (42)

(iii) The second-order edge-connectivity index

2
e = (4E – 3 C3) / 8 (43)

or
2
e = 3 (2V – C3) / 8 . (44)

In 3-regular graphs modeling fullerenes, which are ordinarily made up
from five- and six-membered rings, vertex- and edge-degrees, d(v) = 3 and
d(e) = 4, are the same for the whole series, whilst there are no three-mem-
bered cycles present (C3 = 0). Thus, Eqs. (43) and (44) convert into:

2
e = 0.5 E (45)

and
2
e = 0.75 V . (46)

Thus, the first three edge-connectivity indices for a fullerene are identi-
cal. In the case of buckminsterfullerene C60:

0
e = 1

e = 2
e = 45.

CONCLUDING REMARKS

In recent years there was a considerable interest to compute topological
indices of fullerenes.10–14 These indices have been used for deriving struc-
ture-property relationships with the aim to predict various physicochemical
properties of fullerenes, e.g., Ref. 12. Here we have shown that explicit for-
mulae can be derived for computing two types of connectivity indices for an-
nulenes and fullerenes. These formulae are based solely on the number of
vertices or edges in these compounds. Presumably many other kinds of topo-
logical indices can be also given in a closed form for annulenes, fullerenes
and other families of compounds with highly regular structures.
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SA@ETAK

Indeksi povezanosti regularnih grafova

Sonja Nikoli}, Nenad Trinajsti} i Sanja Ivani{

Dane su eksplicitne formule za ra~unanje prvih triju indeksa povezanosti ~vo-
rova i bridova regularnih grafova. U slu~aju 2-regularnih grafova, koji slu`e npr. za
modeliranje anulena, formule za indeks povezanosti ~vorova i indeks povezanosti
bridova identi~ne su, jer je u tim grafovima broj ~vorova jednak broju bridova. Kod
3-regularnih grafova, koji slu`e npr. za modeliranje fullerena, podudaraju se indeks
povezanosti ~vorova nultog reda i indeks povezanosti drugog reda, a prva su tri in-
deksa povezanosti bridova identi~na.
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