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The Randi} index � is the sum of the terms 1/ � �( ) ( )u v over all pairs
of adjacent vertices, where � stands for the degree of the respective
vertex of the respective molecular graph. We determine the (n,m)-
molecular graphs (i.e., connected graphs with n vertices, m edges,
n – 1 � m � 2n, and maximal vertex degree not exceeding 4), having
the greatest possible and the smallest possible Randi} indices.
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INTRODUCTION

In this paper we characterize molecular graphs having maximal and mi-
nimal values of the Randi} connectivity index. Let G be a graph and let �(v)
be the degree (= number of first neighbors) of the vertex v of G. Then the
Randi} index1 � = �(G) is the sum of the terms 1/ � �( ) ( )u v over all pairs of
adjacent vertices of G. Note that although the investigation of the Randi}
index is usually restricted to molecular graphs, it is well defined for all graphs.

Graphs representing the carbon-atom skeleton of organic molecules
must, for obvious chemical reasons, possess the following properties: they
must be connected and none of their vertices must have degree greater than
four. Such graphs are referred to as molecular graphs.2,3

The graph invariant � was put forward by Randi} a quarter of century
ago.1 Eventually it became one of the most popular topological indices and

* Dedicated to Professor Milan Randi} on the occassion of his 70th birthday.
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certainly the structure-descriptor that found the greatest number of appli-
cations in QSPR and QSAR studies. Details along these lines can be found
in the two monographs4,5 entirely devoted to c and its various generaliza-
tions, as well as in numerous other books1,6,7 and reviews.8,9

Initially the Randi} index was studied only by chemists, but recently it
attracted the attention also of mathematicians.10,11 One of the most obvious
mathematical questions occurring in connection with � is which graphs
(from a given class) have maximal and minimal �-values. The solution of
such problems turned out to be difficult, and only a few partial results have
been achieved so far.

Bollobàs and Erdo"s10 obtained the following:

Theorem 1. Among graphs with a fixed number of vertices, and without iso-
lated vertices, the star has minimal Randi} index.

Araujo and de la Pena11 characterized the graphs with maximal �-values:

Theorem 2. Among graphs with a fixed number of vertices, the graphs in
which all components are regular of non-zero degree have maximal (mutu-
ally equal) Randi} indices.

In the paper12 the trees with maximal Randi} indiced were identified:

Theorem 3. Among trees with a fixed number of vertices, the path has maxi-
mal Randi} index.

According to Theorem 1 the tree with minimal �-value is the star.

Trees whose maximal vertex degree does not exceed 4, with minimal, se-
cond minimal, third minimal, maximal, second maximal and third maximal
Randi} indices were also recently characterized.13,14

In this paper we offer a general solution of the problem of the character-
ization of molecular graphs with minimal and maximal Randi} indices. By
this we extend and sharpen some of our earlier findings.15

In order to arrive at our main results (stated below as Theorems 4 and
5) we need some preparations.

TOWARDS THE MAIN RESULTS

In what follows it is assumed that the graph G considered is a molecular
graph on n vertices and that n � 5. Then the number m of edges of G must
satisfy n – 1 � m � 2n. If m = n – 1 then the respective graph is a tree; if
m = 2n then the respective graph is regular of degree 4. From now on, it will
be understood that G is an (n,m)-molecular graph and this detail will not be
everywhere repeated.
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Denote by mij the number of edges of G that connect vertices of degrees i
and j. Then

� ( )G �
� � �
�

m

ij

ij

i j1 4

. (1)

Note that m11 = 0 whenever G is connected and n � 3. Therefore the case
i = j = 1 needs not be considered any further. Consequently, the right-hand
side of Eq. (1) is a linear function of the nine variables m12, m13, m14, m22,
m23, m24, m33, m34 and m44.

Let ni be the number of vertices of G having degree i, i = 1,2,3,4. Then
the following »book-keeping« relations are obeyed:

n1 + n2 + n3 + n4 = n (2)

m12 + m13 + m14 = n1 (3)

m12 + 2m22 + m23 + m24 = 2n2 (4)

m13 + m23 + 2m33 + m34 = 3n3 (5)

m14 + m24 + m34 + 2m44 = 4n4 (6)

and, in addition to them:

n1 + 2n2 + 3n3 + 4n4 = 2m. (7)

Recall that the left-hand side of Eq. (7) is just the sum of the vertex de-
grees of G.

Relations (2)–(7) are linearly independent. Their linear independence
follows from the fact that the parameter n occurs only in Eq. (2), the param-
eters m22, m33 and m44 only in Eqs. (4), (5) and (6), respectively, whereas the
parameter m only in Eq. (7). In addition, Eq. (3) contains none of the param-
eters n, m22, m33, m44 and m.

Assuming that the parameters n and m are fixed, Eqs. (2)–(7) may be
understood as a system of six linear equations in thirteen unknowns: n1, n2,
n3, n4, m12, m13, m14, m22, m23, m24, m33, m34 and m44.

MOLECULAR GRAPHS WITH MINIMAL RANDI] INDICES

By solving the system (2)–(7) in the unknowns n1, n2, n3, n4, m14 and m44
we obtain

m
n m

m m m m m m14 12 13 22 23 24 33
4 2

3
4
3

10
9

2
3

4
9

1
3

2
9

1
9

�
–

– – – – – – – m34 (8)
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and

m
m n

m m m m m m m44 12 13 22 23 24 33
5 4

3
1
3

1
9

1
3

5
9

2
3

7
9

8
9

� � �
–

– – – – – 34 (9)

which combined with Eq. (1) yields
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�� �m

4
12 12 13 22 23

n m
m m m m

�
� � � � �0.1238 0.0496 0.0833 0.0471

0.0202 0.0278 0.0109m m m24 33 34� � . (10)

Our considerations are based on the fact that all multipliers on the
right-hand side of (10) are positive-valued. Define therefore a non-negative
auxiliary quantity � as:

� �
�

� � � �� ( ) –G 0.1238 0.0496 0.0833 0.0471
4

12 12 13 22
n m

m m m m23 �

0.0202 0.0278 0.0109m m m24 33 34� � (11)

Now, �(G) will attain its smallest values if � is equal to zero or if it is as
close to zero as possible. This will be achieved if the parameters mij, occur-
ring on the right-hand side of (11), have non-negative integer values, as clo-
se to zero as possible. Furthermore, these parameters must be chosen in a
»graphical« manner, namely so that there exist graphs pertaining to them.

To the author’s best knowledge a precise algebraic characterization of the
conditions that the parameters mij must satisfy in order to be »graphical« is
not known. Analogous conditions for n1, n2, n3, n4 are long known,16–20 but it
is not clear how they could be utilized in the present problem.

From Eq. (11) it is seen that if n2 = 2 and n3 = 0 then � is at least 4 

0.0202 = 0.0809. If n2 = 1 and n3 = 1 then � is at least 2 
 0.0202 + 3 

0.0109 = 0.0731. If n2 = 0 and n3 = 2 then � is at least 6 
 0.0109 = 0.0654.
In summary, if n2 + n3 = 2 then � cannot be less than 0.0654. Clearly, � will
exceed the value 0.0654 also if n2 + n3 > 2.
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We now consider the case when n2 + n3 � 1 and search for graphically
feasible combinations of m12, m13, m22, m23, m24, m33 and m34 for which � is
less than 0.0654. There are exactly three such combinations:

From Eqs. (2) and (7) we obtain

2(m + n) = 3n1 + 4n2 + 5n3 + 6n4 = 3(n1 + n2 + 2n3 + 2n4) + n2 – n3 .

This implies

2(n + m) � n2 – n3 (mod 3)

and therefore

n + m � n3 – n2 (mod 3).

Thus, the congruence class modulo 3 to which n + m belongs depends so-
lely on the number of vertices of degree two and three. Consequently, among
the combinations for which � < 0.0654, there is one with n + m � 0 (mod 3),
one with n + m � 1 (mod 3), and one with n + m � 2 (mod 3). This means that
these combinations completely determine the (n,m)-molecular graphs with
the smallest Randi} indices (except for the first few values of n, see below).
We thus arrive at:

Theorem 4. If n is sufficiently large (as specified below), then for any va-
lue of m, n – 1 � m � 2n, the following is true.

(a) If n + m � 0 (mod 3), then molecular graphs without vertices of de-
gree two and three (that is, the graphs possessing only vertices of degree
one and four) have the smallest Randi} indices, equal to (4n + m)/12.

(b) If n + m � 1 (mod 3), then the molecular graphs without vertices of
degree two and with a single vertex of degree three, adjacent to three verti-
ces of degree four, have the smallest Randi} indices, equal to (4n + m)/12 +
( – )/3 3 5 6.

(c) If n + m � 2 (mod 3), then the molecular graphs without vertices of
degree three and with a single vertex of degree two, adjacent to two vertices
of degree four, have the smallest Randi} indices, equal to (4n + m) /12 +
( – )/3 2 4 6.
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What »sufficiently large n« is depends of the value of m and the congru-
ence class of n + m. Below are given the smallest values of n for which Theo-
rem 4 holds in the case of acyclic, unicyclic, bicyclic and tricyclic molecular
graphs.

Anyway, Theorem 4 does not cover the first few values of n, because
graphs with the required properties do not exist if n is not large enough.
The finding of these »exceptional« graphs (with n-values smaller than what
in Theorem 4 is specified as »sufficiently large«) is an easy task for compu-
ter-aided search.12 A complete list of minimal-c trees and unicyclic molecu-
lar graphs has been reported elsewhere.13,14

MOLECULAR GRAPHS WITH MAXIMAL RANDI] INDICES

In order to find the molecular graphs with maximal �-values we cannot
use a procedure analogous to what was described in the previous section.
Namely, such a procedure would lead to graphs composed of several compo-
nents, each of which being regular of degree 2 and/or 3 and/or 4 (cf. Theo-
rem 2). In order to prevent this, a pertinent modification of the method must
be designed.

However, due to Theorems 2 and 3 we already know some (n,m)-molecu-
lar graphs with maximal �.

Proposition 1. If m = n – 1 and n � 3, then the molecular graph with ma-
ximal Randi} index has n1 = 2, n2 = n – 3, n3 = n4 = 0, m12 = 2, m22 = n – 3,
i.e., it is the path.

Proposition 2. If m = n and n � 3, then the molecular graph with maxi-
mal Randi} index has n2 = n, n1 = n3 = n4 = 0, m22 = n, i.e., it is the cycle.

Proposition 3. If n is even, n � 4 and m = 3n/2 then the molecular graphs
with maximal Randi} indices are the regular graphs of degree 3 (for which
n3 = n, n1 = n2 = n4 = 0, m33 = 3n/2).
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n + m � 0 n + m � 1 n + m � 2

acyclic m = n – 1 5 13 9

unicyclic m = n 9 11 7

bicyclic m = n + 1 10 9 8

tricyclic m = n + 2 8 7 9



Proposition 4. If m = 2n and n � 5, then the molecular graphs with maxi-
mal Randi} indices are the regular graphs of degree 4 (for which n4 = n, n1 =
n2 = n3 = 0, m4 = 2n).

Proposition 5. If m = 2 n – 1 and n � 5, then the molecular graphs with
maximal Randi} indices are the graphs obtained by deleting an edge from a
regular graphs of degree 4. For such graphs n3 = 2, n4 = n – 2, n1 = n2 = 0,
m34 = 6, m44 = 2n – 7.

Some further results of this kind are:

Proposition 6. If m = n + 1 and n � 5, then the molecular graphs with
maximal Randi} indices are the graphs obtained by adding an edge to the
cycle in such a manner that a triangle is formed. For such graphs n3 = 2,
n2 = n – 2, n1 = n4 = 0, m23 = 4, m33 = 1 and m22 = n – 5.

Proposition 7. If n is even, n � 6 and m = 3n/2 + 1, then the molecular
graphs with maximal Randi} indices are the graphs obtained by adding an
edge to a regular graph of degree 3. For such graphs n4 = 2, n3 = n – 2, n1 =
n2 = 0, m34 = 6, m44 = 1, m33 = 3n/2 – 6.

Proposition 8. If n is even, n � 6 and m = 3n/2 + 2, then the molecular
graphs with maximal Randi} indices are the graphs obtained by adding two
edges to a regular graph of degree 3 in such a manner that the subgraph in-
duced by the four vertices of degree 4 is isomorphic to K4. For such graphs
n4 = 4, n3 = n – 4, n1 = n2 = 0, m34 = 4, m44 = 6, m33 = 3n/2 – 8).

Proposition 9. If n is odd, n � 5 and m = �3n/2� + 1, then the molecular
graphs with maximal Randi} indices are the graphs consisting of one vertex
of degree four and n – 1 vertices of degree 3. For such graphs m34 = 6, m33 =
�3n/2� – 5.

Proposition 10. If n is odd, n � 5 and m = �3n/2� + 2, then the molecular
graphs with maximal Randi} indices are obtained by adding an edge to a
graph specified in Proposition 9, in such a manner that the subgraph in-
duced by the three vertices of degree 4 is isomorphic to K3. For such graphs
n4 = 3, n3 = n – 3, n1 = n2 = 0, m34 = 6, m44 = 3, m33 = �3n/2� – 7.

Proposition 11. If m = 2n – 2 and n � 5, then the molecular graphs with
maximal Randi} indices are the graphs obtained by deleting two edges from
a regular graph of degree 4 in such a manner that the subgraph induced by
the four vertices of degree 3 is isomorphic to C4. For such graphs n3 = 4, n4 =
n – 4, n1 = n2 = 0, m34 = 4, m33 = 4, m44 = 2n – 8.

Propositions 1–11 cover the »exceptional« choices of the parameters n
and m, namely choices for which graphs mentioned in Theorems 5a and 5b
do not exist. By direct construction we easily verify the following:
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Proposition 12. A molecular graph with n1 = n4 = 0 and m23 = 2 exist for
all values of n and m, such that n � 5 and n + 2 � m � �(3n – 1)/2�, and only
for these values.

Proposition 13. A molecular graphs with n1 = n2 = 0 and m34 = 2 exist for
all values of n and m, such that n � 9 and �(3n + 5)/2� � m � 2n – 2, and only
for these values.

We are now prepared to seek for molecular graphs with maximal Randi}
index. The following two cases need to be considered separately: (A) n + 2 �
m � �(3n – 1)/2� and (B) �(3n + 5)/2� � m � 2n – 2. Other choices of m are cov-
ered by Propositions 1–11.

Case A: n + 2 � m � �(3n – 1)/2�

In order to avoid graphs in which one component is a regular graph of
degree 2, we require that

m22 < n2 if n2 > 1

m22 = 0 if n2 = 0.

Subcase A1: n2 > 0

If n2 > 0, then we introduce an auxiliary non-negative variable �, satisfy-
ing

m22 + � = n2 – 1. (12)

Consider now the system of equations (2)–(7) and (12) and solve it in n1,
n2, n3, n4, m22, m23 and m33. This gives

n1 = m12 + m13 + m14

n n m m m m m m m2 12 13 14 24 34 443 2 2
7
4

1
4

1
4

1
2

� � � � �– – –2

n m n m m m m m m3 12 13 14 24 34 442 2
1
2

1
2

1
2

� � � �– – – –

n m m m m4 14 24 34 44
1
4

1
4

1
4

1
2

� � � �

m n m m m m m m m22 12 13 14 24 34 443 2 1 2 2
7
4

1
4

1
4

1
2

� � � �– – – – – – �

m m m23 12 242 2� �– – �

m m n m m m m m m33 12 13 14 24 34 443 3 1 2
3
4

1
4

5
4

3
2

� � � �– – – – – – �
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which substituted back into Eq. (1) results in:

� ( ) – – – –G � � �
�
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��

	



�� �

�

�
��

	



��

n
m m

2
2

6

5
6

1

2

1

6

1
3

1

3

2
312 13 –

1
8 14m �

1

8

1

6

1
24

1
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7
24

2

6

5
624 34– – –�

�

�
��

	



�� �

�

�
��

	



�� �

�

�
��

	
m m



�� ��

n
m m m

2
2

6

5
6 13 13 14� – – – – –0.0345 0.0853 0.1250

0.0130 0.0026 0.0168m m24 34– – �

Note that the parameters m and m44 do not occur on the right-hand side
of the latter expression.

Now, in order that �(G) be maximal, we have to set

m12 = m13 = m14 = m24 = m34 = � = 0 (13)

provided this choice is graphically feasible. Also m44 must be set equal to
zero, because otherwise all vertices of degree 4 would be mutually connected
and not connected to other vertices of G, i.e., the graph would possess a com-
ponent which is regular of degree 4.

From conditions (13) and m44 = 0 follows n1 = n4 = 0, n2 = 3n – 2m, n3 =
2m – 2n, m22 = 3n – 2m – 1, m23 = 2, m33 = 3m – 3n – 1. From Proposition 12
we see that graph with such parameters exist for all the required values of
m. The Randi} indices of these graphs are equal to

c
� �1 � �

n
2

2

6

5
6

– (14)

which, remarkably, is independent of m.

Subcase A2: n2 = 0

If n2 = 0, then m12 = m22 = m23 = m24 = 0. The system (2)–(7) has now to
be solved in the variables n1, n3, n4, m13 and m33. The resulting expression
of � reads:

� ( ) – – –G �
�

�
��
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n
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�� �m14
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4 3
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634 44�
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3
2

1

3

1
3

2
3

1

3

n
m– – –

�

�
��

	



�� �

�

�
��

	



�� 0.0468 0.0142 0.0223m m m14 34 44– – .

In order that �(G) be as large as possible it must be m14 = m34 = m44 = 0,
in which case the maximal value of � is:

� ��
2 3

2
1

3

1
3

2
3

1

3
�

�

�
��

	



�� �

�

�
��

	



��

n
m– – . (15)

Combining Eqs. (14) and (15) we get

� � � � � �� �
1 2 1

6
3 2 2 3 2 6 5– � �( – )( – ) –n m .

Because m � (3n – 1)/2 it follows that

� � � �� �
1 2 1

6
2 6 3 3 0– � � �( – – ) 0.0278 .

Hence �(1) always exceeds �(2) and we may assume n2 > 0. Consequently,
�(1) is the required maximal possible value of the Randi} index. Bearing in
mind Proposition 12 we can now state:

Theorem 5a. Among the molecular graphs for which n + 2 � m � �(3n –
1)/2�, maximal Randi} index is attained by the graphs with n1 = n4 = 0, n2 =
3n – 2m, n3 = 2m – 2n, m22 = 3n – 2m – 1, m23 = 2 and m33 = 3m – 3n – 1.
This maximal value is equal to n/2 + 2/ 6 5 6– / (and is, hence, independent
of m). Such graphs exist for n � 5.
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Figure 1. Ga and Gb are examples of graphs with maximal Randi} index, specified in
Theorems 5a and 5b; these graphs possess exactly two edges (indicated by arrows)
connecting vertices of different degrees.



The graph Ga, depicted in Figure 1, illustrates the structure of the graphs
described in Theorem 5a.

Case B: �(3n + 5)/2� � m � 2n – 2

This case is analyzed in a similar manner as the previous one. Instead of
condition m22 < n2 we now require m44 < 2n4. Thus instead of Eq. (12) we in-
troduce a non-negative auxiliary variable �, such that

m44 + � = 2n4 – 1. (16)

The consideration is simplified by the fact that molecular graphs for
which m > 3n/2 necessarily possess vertices of degree 4. Consequently, the
case n4 = 0 needs not be examined at all.

Solving the system (2)–(7) and (16) in n1, n2, n3, n4, m33, m34 and m44 re-
sults in:

n1 = m12 + m13 + m14

n m m m m2 12 22 23 24
1
2

1
2

1
2

� � � �

n n m m m m m m m3 12 13 14 22 23 244 2 4 3 3 2� – – – – – – –

n m n m m m m m m4 12 13 14 22 23 242 3
5
2

2 2
1
2

1
2

� � � � � � �–

m n m m m m m m m33 12 13 14 22 23 246 3 1 6 5 4 3 2� – – – – – – – – – �

m m m34 14 242 2� �– – �

m m n m m m m m m44 12 13 14 22 23 244 6 1 5 4 4 2� � � � � � �– – – �

which substituted back into Eq. (1) yields:
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m m
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�� �z (17)

n
m m m

2
7
12

1

3
12 13 14� � � � � �0.0429 0.0853 0.1220

0.0084 0.0185 0.0056m m23 24� - z .
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This time the parameters missing from the right-hand side of Eq. (17)
are m and m22.

For getting a maximal value for �(G), Eq. (17), we have now to set

m12 = m13 = m14 = m23 = m24 = � = 0

and, in order to prevent that a regular graph of degree 2 be a component of
G, also m22 = 0. Bearing in mind Proposition 13 we finally arrive at:

Theorem 5b. Among the molecular graphs for which �(3n – 5)/2� � m �
2n – 2, maximal Randi} index is attained by the graphs with n1 = n2 = 0,
n3 = 4n – 2m, n4 = 2m – 3n, m33 = 6n – 3m – 1, m34 = 2 and m44 = 4m – 6n –
1. This maximal value is equal to n/2 – 7/12 + 1/ 3 (and is, hence, independ-
ent of m). Such graphs exist for n � 9.

The graph Gb, depicted in Figure 1, illustrates the structure of the graphs
described in Theorem 5b.

By Theorems 5a and 5b and by the Propositions 1–11 we characterized
the molecular graphs with maximal Randi} index for all n, n � 5, and for all
m, n – 1 � m � 2n.

ON CONSTRUCTION OF GRAPHS WITH MINIMAL
AND MAXIMAL RANDI] INDICES

Theorems 4 and 5 provide a complete characterization of the molecular
graphs with minimal and maximal �-values. They, however, do not give a
recipe how such graphs can actually be constructed. In fact, the construction
of representatives of such graphs is quite elementary and should be evident
from Figure 1 and well as from the earlier communicated examples.13,14 The
true problem with the (n,m)-molecular graphs having minimal and maximal
Randi} indices is that these are not unique. Therefore, instead in their con-
struction one should be interested in their enumeration. Of course, the ideal
solution of this problem would be a constructive enumeration. This, how-
ever, remains a task for the future.
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SA@ETAK

Molekulski grafovi s minimalnim i maksimalnim
Randi}evim indeksima

Ivan Gutman

Randi}ev indeks c zbroj je ~lanova oblika 1 / ( ) ( )� �u v po svim parovima susjed-
nih ~vorova, gdje � ozna~uje stupanj odgovaraju}eg ~vora u molekulskom grafu. U
radu su karakterizirani (n,m)-molekulski grafovi (to jest, povezani grafovi s n
~vorova, m grana, n – 1 � m � 2n, takvi da im maksimalni stupanj ~vora nije ve}i od
4), koji imaju najmanje i najve}e Randi}eve indekse.
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