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A computer program has been designed for efficacious computation

of the variable connectivity index. It has been tested on Randi}’s

and Basak’s work20 on aliphatic primary amines. We have repro-

duced their results for the fit model. We have also cross-validated

(CV) this model. Both the fit and the CV models possess close (com-

parable) statistical parameters. It appears that the use of the vari-

able connectivity index in QSPR yields very good regression equa-

tions in the case of homogeneous sets of molecules.

Key words: aliphatic amines, connectivity index, vertex-connectiv-

ity index, variable vertex-connectivity index, QSPR.

INTRODUCTION

Milan Randi} introduced in 1975 a bond-additive topological index as a

descriptor for characterization of molecular branching,1 which he called the

branching index and denoted it by c. This index was soon after renamed

into the connectivity index.2 We call Randi}’s index the vertex-connectivity

index3,4 to distinguish it from the edge-connectivity index, introduced

* Dedicated to Professor Milan Randi} on the happy occasion of his 70th birthday.
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twenty years later by Estrada.5 The vertex-connectivity index has become

the most used topological index in QSPR6 and QSAR7 studies.8–12

In 1991, Randi} introduced the variable vertex-connectivity index13 as

an alternative approach to Kier and Hall’s valence vertex-connectivity in-

dex14 for characterization of heterosystems in QSPR and QSAR studies. The

difference between the variable vertex-connectivity index and the valence

vertex-connectivity index is in that the former index uses optimized vertex-

weights and the latter index uses fixed vertex-weights. For example, in the

case of aliphatic amines, the fixed weight for nitrogen in the primary amino

group is 3, in the secondary amino group 4 and in the tertiary amino group

5, and the fixed weights for carbon are 1, 2, 3 or 4 depending on the bonding

environment of carbon.

The variable vertex-connectivity index remained unnoticed for a number

of years, probably because it was published in a less visible journal. To rem-

edy this, Randi} and co-workers produced in the last few years a number of

papers using this index.15–19 To support their efforts, we produced an itera-

tive least-squares procedure for efficacious computation of the variable ver-

tex-connectivity index. We tested our procedure against Randi}’s and Ba-

sak’s results for boiling points of smaller aliphatic amines,20 because in that

article they described in detail the procedure for generating variable connec-

tivity indices. In addition, we have considered the boiling points of primary

amines, since they have recently been rather thoroughly studied by Pogliani

using molecular pseudoconnectivity indices.21 In the past, aliphatic amines

were also studied by Kier and Hall.22,23

VARIABLE VERTEX-CONNECTIVITY INDEX

The fixed (valence) vertex-connectivity index c
(v) can be calculated, fol-

lowing suggestions by Balaban,24 from the row-sums of the vertex-adjacency

matrix �(rs)i, (rs)j� using the inverse square-root algorithm making the con-

tribution �(rs)i (rs)j�
–0.5 to the i-j bond. We call this matrix the vertex-adja-

cency matrix to differentiate it from the edge-adjacency matrix.25

The variable vertex-connectivity index can also be obtained by the in-

verse square-root algorithm using the row-sums of the augmented (weight-

ed) vertex-adjacency matrix. Instead of zeros, the augmented vertex-adja-

cency matrix has variables X, Y, Z, etc. on the main diagonal. However, a

variable is added to each row-sum, thus producing bond weights ��(rs)i + X�
�(rs)j + Y��–0.5, where X and Y are variables associated with atoms x and y,

respectively. Note that, since the variable vertex-connectivity index is a

function of variables, it has been denoted by the superscript f, c
f, in order to

distinguish it from the fixed valence vertex-connectivity index c
v. For exam-
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ple, in the case of aliphatic amines, variables are X = carbon (c) and Y = ni-

trogen (n). The vertex (atom)-weights are not fixed any more, they are now

flexible to allow one to obtain the optimized weights leading to QSPR/QSAR

models with the lowest possible errors of estimate. In Figure 1, we show the

construction of the variable vertex-connectivity index for 2-aminobutane.

ITERATIVE LEAST-SQUARES PROGRAM FOR VARIABLE

VERTEX-CONNECTIVITY INDICES

The variable vertex-connectivity index is to be determined for each re-

gression ana1ysis through an optimization procedure that, if performed us-
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Figure 1. Construction of the variable vertex-connectivity index �
f for 2-aminobutane

represented by the labeled weighted hydrogen-depleted tree Tw . The augmented

(weighted) vertex-adjacency matrix Aw and the row-sums used for calculating �
f are

shown. For convenience, variables X and Y are replaced with c (for carbon) and n (for

nitrogen). (a) 2-Aminobutane; (b) Labeled weighted tree. Black dot denotes the posi-

tion of nitrogen; (c) Augmented vertex-adjancency matrix and the row-sums (rs); (d)

Variable vertex-connectivity index.



ing the pedestrian approach (that is, varying one variable at a time, as Ran-

di} and Basak did) could be both time-consuming and missing the optimal

answer. Here, we describe an iterative least-squares program that optimizes

the c
f values in relation to a certain property.

The program optimizes the variables X, Y, Z, W of the variable vertex-

connectivity indices c
f (named Ci in the program) listed in the subroutine

FUN (X, Y, Z, W) with respect to a set of experimental values Ei using a

modified iterative Newton's least-squares method. Since the vertex-connec-

tivity indices are in the subroutine, the program can handle any form of the

nonlinear molecular descriptor with up to 4 variables using the same proce-

dure.

The program starts with reading the number of variables, their starting

values, their increment for calculating the partial derivative, a starting va-

lue for the sum of deviation squares (must be greater than the first one be-

ing calculated) and the accuracy of the minimal sum of deviation squares.

In the linear mode, it calculates the Ci's using the starting values of the

variables and determines the slope a and intercept b of the regression line

between Ci's and Ei's.

The optimization procedure will be outlined for two variables, X and Y,

for which the starting values were chosen to be X0 and Y0. Using Taylor's ex-

pansion for X0, Y0 to get corrections X1 and Y1 for the function Ccorr(X,Y),

i.e., X = X0 + X1 and Y = Y0 + Y1, yields:

Ccorr(X,Y) = C(X0 ,Y0) + (�C/�X0)X1 + (�C/�Y0)Y1 (1)

with

�Ccorr/�X0 = P and �Ccorr/�Y0 = Q (2)

or for the i-th value:

Ci
corr = Ci + PiX1 + QiY1 (3)

Ei should depend linearly on Ccorr(X,Y):

Ei
calc = aCi + aPiX1 + aQiY1 + b (4)

and the sum of deviation squares function:

�(X1,Y1) = �(Ei – Ei
calc)2 = �(Ei – aCi – aPiX1 – aQiY1 – b)2 (5)
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will be minimum for:

��/�X1 = ��/�Y1 = 0 (6)

yielding:

��/�X1 = a�EiPi – a2�CiPi – a2X1�Pi
2 – a2Yi�PiQi – ab�Pi = 0 (7)

��/�Y1 = a�EiQi – a2�CiQi – a2Y1�Qi
2 – a2Xi�PiQi – ab�Qi = 0 (8)

or:
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which allows calculation of X1 and Y1 and obtaining X and Y, from which the

new slope a and intercept b are determined. The program then sets X0 = X

and Y0 = Y and repeats the process until convergence to the desired accu-

racy limit of the deviation squares sum. All the partial derivatives for the

variable vertex-connectivity indices are calculated using the input incre-

ment d by:

�Ccorr/�X � �C(X + d � X,Y) – C(X,Y)�/d � X (10)

and:

�Ccorr/�Y � �C(X,Y + d � Y) – C(X,Y)�/d � Y (11)

In the quadratic mode (here shown only for one variable, X) from the ini-

tial Ci's and Ei's, the optimal coefficients a, b, c of the function Ei
calc = aCi

2 +

bCi + c are determined by the least-squares regression and entered into the

Taylor expanded sum of deviation squares function:

�(X1) = �(Ei – aCi
2 – 2aCiPiX1 – aPi

2X1
2 – bCi – bPiX1 – c)2 (12)

which will be minimum for:

d�/dX1 = 0 = (a�P4)X1
3 + (3a�CP3 + 1.5�P3)X1

2 +

(a�C2P2 + b�CP2 + b/2a�P2 + 2a�C2P2 + 2b�CP2 + c�P2 + �P2E)X1 +

a�C3P + b�C2P + c�CP – �CPE – b/2a�PE + b/2�C2P + b2/2a�CP =

a1X1
3 + a2X1

2 + a3X1 + a4 (13)
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The real root of this equation is the correction X1 for X, which then re-

places X0 as in the linear mode. The polynomial root(s) are calculated in the

subroutine NULT (A1, A2, A3, A4, X1) using an iterative procedure. Addi-

tional information about the program, written in FORTRAN, can be obtai-

ned from Nenad Kezele (nenad@joker.irb.hr).
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TABLE I

The variable vertex-connectivity indices (�f) and boiling points (bp/K) of 16

aliphatic primary amines considered in this report

No. Primary amine bp/K �
f

1 Nonylamine 474.15 1/sqrt �(1 + c) (2 + c)� + 7/sqrt �(2 + c)�
(2 + c)� + 1/sqrt �(2 + c) (1 + n)�

2 Octylamine 453.15 1/sqrt �(1 + c) (2 + c)� + 6/sqrt �(2 + c)�
(2 + c)� + 1/sqrt �(2 + c) (1 + n)�

3 Heptylamine 428.15 1/sqrt �(1 + c) (2 + c)� + 5/sqrt �(2 + c)�
(2 + c)� + 1/sqrt �(2 + c) (1 + n)�

4 Hexylamine 403.15 1/sqrt �(1 + c) (2 + c)� + 4/sqrt �(2 + c)�
(2 + c)� + 1/sqrt �(2 + c) (1 + n)�

5 4-Methylpentylamine 398.15 2/(2 + c) + 2/sqrt �(1 + c) (3 + c)� +

1/sqrt �(2 + c) (3 + c)� + 1/sqrt �(2 + c)�
(1 + n)�

6 2-Aminohexane 387.65 1/sqrt �(1 + c) (2 + c)� + 1/sqrt �(1 + c)�
(3 + c) + 2/sqrt �(2 + c) (2 + c)� +

1/sqrt �(3 + c) (2 + c)�

7 Pentylamine 377.15 1/sqrt �(1 + c) (2 + c)� + 3/sqrt �(2 + c)�
(2 + c)� + 1/sqrt �(2 + c) (1 + n)�

8 2-Methylbutylamine 369.15 2/sqrt �(2 + c) (3 + c)� + 1/sqrt �(1 + c)�
(2 + c)� + 1/sqrt �(1 + c) (3 + c)� +

1/sqrt �(2 + c) (1 + n)�

9 3-Methylbutylamine 369.15 2/sqrt �(1 + c) (3 + c)� + 1/sqrt �(3 + c)�
(2 + c)� + 1/sqrt �(2 + c) (1 + c)� +

1/sqrt �(2 + c) (1 + n)�

10 2-Aminopentane 365.15 1/sqrt �(1 + c) (3 + c)� + 1/sqrt �(3 + c)�
(2 + c)� + 1/sqrt �(2 + c) (2 + c)� +

1/sqrt �(1 + c) (2 + c)� + 1/sqrt �(3 + c)�
(1 + n)�

11 3-Aminopentane 364.15 2/sqrt �(1 + c) (2 + c)� + 2/sqrt �(2 + c)�
(3 + c)� + 1/sqrt �(3 + c) (1 + n)�



APPLICATION TO PRIMARY AMINES

Table I gives explicit expressions for the variable vertex-connectivity in-

dices for 16 primary aliphatic amines considered by Randi} and Basak.20

Variables c (1.25) and n (–0.65) were reproduced as corresponding to the

optimal values of �
f for the boiling points of the primary amines considered,

the standard error of estimate (S; N – I – 1 in the denominator, where N =

the number of molecules and I = the number of descriptors) being 1.907 K.

Randi} and Basak achieved their results using a stepwise procedure with 21

steps. Our procedure produced the same results within seconds. We give ex-

plicitly the fit (descriptive) model26 because Randi} and Basak did not give

it in their article:

bp = 189.16 (� 2.29) + 83.45 (� 0.98) �
f

N = 16 Rfit = 0.999 Sfit = 1.907 F = 7296.2 (14)

where bp stands for the boiling point while Rfit and Sfit stand for the correla-

tion coefficient and the standard error of estimate, respectively, of the fit

model.

In addition to Randi}’s and Basak’s investigations, we also carried out

internal (cross) validation of this model using the leave-one-out procedure.
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No. Primary amine bp/K �
f

12 2-Amino-2-methylbutane 351.15 2/sqrt �(1 + c) (4 + c)� + 1/sqrt �(4 + c)�
(2 + c)� + 1/sqrt �(2 + c) (1 + c)� +

1/sqrt �(4 + c) (1 + n)�

13 Butylamine 350.15 1/sqrt �(1 + c) (2 + c)� + 2/sqrt �(2 + c)�
(2 + c)� + 1/sqrt �(2 + c) (1 + n)�

14 2-Methylpropylamine 342.15 2/sqrt �(1 + c) (3 + c)� + 1/sqrt �(3 + c)�
(2 + c)� + 1/sqrt �(2 + c) (1 + n)�

15 2-Aminobutane 336.15 1/sqrt �(1 + c) (3 + c)� + 1/sqrt �(3 + c)�
(2 + c)� + 1/sqrt �(2 + c) (1 + c)� +

1/sqrt �(3 + c) (1 + n)�

16 Propylamine 322.15 1/sqrt �(1 + c) (2 + c)� + 1/sqrt �(2 + c)�
(2 + c)� + 1/sqrt �(2 + c) (1 + n)� +

1/sqrt �(3 + c) (1 + n)�

TABLE I (cont.)



The statistical parameters obtained for the cross-validated model, Rcv =

0.998 and Scv = 1.907 (cv stands for cross validation), support the above

model. Figure 2 contains the plot of experimental (bp)exp versus fit (bp)fit and

(bp)cv boiling points of 16 aliphatic amines.

In Table II, we give the values of the variable connectivity indices (�f)

computed using parameters c = 1.25 and n = –0.65, experimental (bpexp) and

computed (bpfit, bpcv) boiling points, and the differences between the experi-

mental and computed boiling points.

In what follows, we will mention the results of other researchers, al-

though they used somewhat larger sets of aliphatic amines and slightly dif-

ferent values for boiling points. We do this to show the advantage of using

variable descriptors in QSPR modeling. Pogliani considered 21 primary

aliphatic amines.21 He used molecular pseudoconnectivity indices and his

best structure-boiling point models with one-, two- and three-indices have

the following S values: 5, 3.4 and 3.1, respectively. The best model that

Pogliani obtained has S = 2.4. Kier and Hall23 obtained the best model (S =

3.1) with a mixed set of four indices. It is interesting to note that the simple

vertex-connectivity index offers a comparable correlation (S = 3.49) to those

obtained by Kier and Hall and Pogliani. The final point to make is that their

models are descriptive or fit models; they are not predictive models.26
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Figure 2. A plot of the experimental boiling points of aliphatic amines (bpexp) versus

fit (bpfit), denoted by filled-in circles (A), and cross-validated boiling points (bpcv),

indicated by empty circles.



CONCLUDING REMARKS

We have produced a computer program for the computation of variable

connectivity indices. The program was tested on Randi}’s and Basak’s arti-

cle,20 in which, among other things, they produced the fit structure-boiling

point for aliphatic primary amines. We reproduced their results and addi-

tionally computed the cross-validated model. In their article, Randi} and

Basak did not compute cross-validated models – they produced only fit mod-

els in all the studied cases. Therefore, there still remain the open questions

about the use of the variable connectivity index in predictive models and in

the case of non-homogeneous sets of molecules. These questions have been

already discussed by Zefirov and Palyulin.26
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TABLE II

The variable connectivity index �
f for 16 aliphatic amines, their experimental

(bp)exp, cross-validated (bp)cv and fit (bp)fit boiling points, and the differences be-

tween experimental and calculated boiling points (bp)exp – (bp)fit, (bp)exp – (bp)cv

No.
( )expbp

K
�

f ( )bp

K

cv ( )bp

K

fit ( ) – ( )bp bp

K

exp cv ( ) – ( )bp bp

K

exp fit

1 474.15 3.4613 480.82 478.02 –6.67 –3.87

2 453.15 3.1536 452.07 452.34 1.09 0.81

3 428.15 2.8459 426.42 426.66 1.73 1.49

4 403.15 2.5382 400.80 400.99 2.35 2.17

5 398.15 2.4688 394.97 395.19 3.18 2.96

6 387.65 2.3976 389.36 389.25 –1.71 –1.60

7 377.15 2.2305 375.18 375.31 1.97 1.84

8 369.15 2.1689 370.24 370.17 –1.09 –1.02

9 369.15 2.1611 369.54 369.52 –0.39 –0.37

10 365.15 2.0899 363.45 363.57 1.70 1.58

11 364.15 2.0977 364.23 364.22 –0.08 –0.07

12 351.15 1.9315 350.27 350.35 0.88 0.80

13 350.15 1.9228 349.57 349.63 0.58 0.52

14 342.15 1.8534 344.05 343.84 –1.90 –1.69

15 336.15 1.7822 338.16 337.89 –2.01 –1.74

16 322.15 1.6151 324.35 323.95 –2.20 –1.80
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SA@ETAK

O ra~unanju varijabilnog indeksa povezanosti ~vorova

Nenad Kezele, Leo Klasinc, Jan von Knop, Sanja Ivani{ i Sonja Nikoli}

Prire|en je ra~unalni program za djelotvorno ra~unanje varijabilnoga indeksa

povezanosti. Program je testiran na radu Randi}a i Basaka20 u kojem je dan ugo|eni

model za predvi|anje to~ke vreli{ta alifatskih primarnih amina. Reproducirav{i nji-

hove rezultate, provjerili smo kvalitetu ugo|enoga modela s pomo}u unakri`no vre-

dnovanih parametara, {to nisu u~inili Randi} i Basak. Po svemu sude}i, varijabilni

indeks povezanosti vrlo je pogodan za izvo|enje dobrih regresijskih modela u slu~aju

homolognih skupova molekula.
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