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Global, relative, and local complexity of the five Platonic solids (tetrahedron, octahedron,

cube, icosahedron, and dodecahedron) are described and compared. Several of the most recent

measures of topological complexity are used: the subgraph count, overall connectivity and

overall Wiener indices, the total walk count, and the information theoretic index for vertex de-

grees distribution. Equations are derived for the first several orders of these indices as func-

tions of the number of vertices and vertex degrees. Relative complexity, defined as the ratio of

the complexity index selected and its value for the complete graph having the same number of

vertices as the respective Platonic solid, singles out tetrahedron as the most complex structure

with 100 % relative complexity. The global complexity indices, as well as the local indices (de-

fined per vertex and per edge) uniformly identify icosahedron as the most complex Platonic

solid. These findings correlate with the preferable formation of icosahedron and tetrahedron in

a variety of cases.
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INTRODUCTION

Platonic solids attract the attention of scientists both with

their high symmetry-based beauty and as models for crys-

tal and molecular shapes. Assessments of Platonic solids

topology and complexity were first initiated in the Za-

greb research group of Professor Nenad Trinajsti}.1–5 The

contributions of Prof. Trinajsti} to the development of

chemical graph theory are numerous and his important

early papers in this area, on the Zagreb indices6 and their

relations to molecular orbital theory7 and topological

resonance energy,8 as well as his seminal monography,9

have attracted a plethora of researchers throughout the

world to this fascinating area of theoretical chemistry.

The present author also started his own journey in mo-

lecular topology during a three-month visit to Professor

Trinajsti} in 1976. This visit gave birth to a fruitful co-

operation between the Zagreb and Burgas groups of mathe-

matical chemistry, which resulted in 19 joint papers pub-

lished. These papers included the first detailed charac-

terization of molecular branching10–12 and molecular

cyclicity13–19 patterns, along with their applications to

QSPR/QSAR studies,20–25 and a combined topological/

information-theoretical description of molecules.26–28

Quantitative assessments of the complexity of mole-

cules and chemical reaction networks were first pub-

lished in the 1980s,29–31 although related studies on the

complexity of graphs can be traced back another 10–15

years.32,33 Despite extensive studies and a number of rig-

orous complexity concepts proposed, the notion of com-

plexity is still regarded by many as fuzzy and subjective.

The present paper deals with what might be called struc-

tural or topological complexity. This kind of complexity

can be unambiguously defined on a graph-theoretical ba-
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sis proceeding from relevant graph-invariants. The basic

idea of structural complexity is that complexity increa-

ses with the number of structural elements and, particu-

larly, with the number of their interactions. In graph-the-

oretical terms, the more vertices and edges a graph has,

the more complex it is. More sophisticated complexity

measures have been developed to describe the variety in

the complexity of graphs having the same number of

vertices and edges. Detailed information on complexity

concepts and measures can be found in a recently pub-

lished monograph.34

The preceding complexity assessments of Platonic

solids were made1–5 with such topological indices as the

Hosoya non-adjacency index,35 the Randi} connectivity

index,36 the number of spanning trees,1,2 the Bertz com-

plexity index,29,30 the Estrada edge-connectivity index,37

and Klein’s resistance distances.3–5, 38–40 The present paper

focuses on some recent complexity approaches based on

the total subgraph count,41–46 overall connectivity44–47

and overall Wiener48 indices, and total walk count.49–52

Complexity Measures Used

The basic formulas used in calculations are briefly pre-

sented here. More details can be found in the references

given in the foregoing introduction. A common feature

of the subgraph count SC, overall connectivity OC, over-

all Wiener OW, and total walk count TWC indices is that

they can be presented in a vector form X (0X, 1X, 2X, …,
EX). Here, X is the global value the index has for the en-

tire graph G, and E is the total number of edges in G:

X(G) = k

k

E

X ( )G
�

�
1

(1)

where kX(G) is the value of the respective kth-order

complexity index X(G). For the subgraph count, kSC(G)

is simply the number of subgraphs kGi having k edges.

Similarly, kSWC(G) is the count of all walks of length k:

k SC(G) = k

i

k

ii
SC ( )G G�� (2)

k SWC(G) = k

i

k

ii
SWC ( )G G�� (3)

In the case of the kth-order overall connectivity kOC

and overall Wiener kOW indices, the summing-up is taken

over the values of a certain graph-invariant X(Gi) in all

subgraphs kGi having k edges – the total subgraph adja-

cency Ai(
kGi) for overall connectivity and the subgraph

Wiener number Wi(
kGi) for overall Wiener indices:

k OC(G) = k

i

k

ii
A ( )G G�� (4)

k OW(G) = k

i

k

ii
W ( )G G�� (5)

Besides the four measures of topological complexity

given above, a topological-information complexity in-

dex, based on the vertex degrees distribution, Ivd, was

also tested. The index was defined53 as the difference

between the maximum value of Shannon’s entropy,

Hmax(G), and the current entropy value H(G) for the

graph used to represent the respective Platonic solid:

Ivd(G) = a ai i

i

V

log 2

1�

� (6)

where ai is the vertex degree and V is the number of ver-

tices in the graph.

Equations (2–6) define global complexity measures.

For comparative purposes one may also use relative

measures, Xr (G) or kXr (G), obtained by dividing the

global index X by the value that index has for the com-

plete graph KV having the same number of vertices V.

Bertz and Herndon41 first used such an approach to cal-

culate the complexity of molecules by finding their simi-

larity to the most complex one having the same size. In

the present paper, the kth order relative complexity in-

dex, kXr(G), is similarly defined by dividing the kth or-

der index kX(G) by the kth order of X in the respective

complete graph:

Xr(G) =
X

X V

( )

( )

G

K
; kXr(G) =

k

k

V

X

X

( )

( )

G

K
(7)

Due to the uniform vertex degrees in each Platonic

solid (as well as in all regular or vertex-transitive graphs),

the average complexity, defined per vertex and per edge,

might also be regarded the local complexity of a vertex,

X(vertex), or local complexity of an edge, X(edge):

X(vertex) = X(G)/V ; kX(vertex) = kX(G)/V (8)

X(edge) = X(G)/E ; kX(edge) = kX(G)/E (9)

Equations for the Complexity Indices of Platonic

Solids

As seen from Eqs. (1–5), deriving closed-form equations

for these complexity indices of Platonic solids (PS)

would be a difficult task due to the presence of E + 1

terms in the SC, OC, and OW indices, and V – 1 terms in

the TWC index. This is not necessary, however, because

the first several terms of each of these measures suffice

to assess and compare Platonic solids complexity. Deri-

vations for these first terms are straightforward due to

the fact that Platonic solids are represented by regular

(and even vertex-transitive) graphs (Figure 1), which are

graphs with vertices of identical degree ai. The five sol-

ids will be abbreviated as T, O, C, I, D, for tetrahedron,

octahedron, cube, icosahedron, and dodecahedron, re-

spectively. While the equations for the first- and sec-

ond-order indices are general for all Platonic solids and

all vertex-transitive graphs, this is true of higher orders

only for the total walk count. For this reason, the com-

plexity of the five Platonic solids was assessed by two

different equations for the third-order subgraph count,
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overall connectivity, and overall Wiener indices. No ex-

pressions are shown for the first-order overall Wiener in-

dex and the first-order total walk count because they are

directly related to the number of edges: 1OW = E; 1TWC

= 2E. The details of the formulas’ derivations for the

third-order indices are given in the Appendix.

1SC(PS) = E =
1

2
V ai (10)

2SC(PS) = 1SC � (ai – 1) =
1

2
V ai (ai – 1) (11)

3SC(T,O,I) =
1

6
V ai (4ai

2 – 9ai + 1) (12)

3SC(C,D) =
1

6
V ai (ai – 1) (4ai – 5) (13)

1OC(PS) = 1SC � 2ai = V ai
2 (14)

2OC(PS) = 2SC � 3ai =
3

2
V ai

2(ai – 1) (15)

3OC(C,D) =
2

3
V ai

2 (ai – 1) (4ai – 5) (16)

3OC(T,O,I) =
1

3
V ai

2 (8ai
2 – 18ai + 1) (17)

2OW = 2SC � W(p2) = 2V ai (ai – 1) (18)

3OW(C,D) =
1

2
V ai (ai – 1) (13ai – 16) (19)

3OW(T,O,I) =
1

2
V ai (13ai

2 – 29ai – 2) (20)

1SWC(PS) = 2E = V ai (21)

2SWC(PS) = 1SWC � ai = V ai
2 (22)

3SWC(PS) = 2SWC � ai = V ai
3 (23)

Ivd(PS) = V ai log2 ai (24)

Obtaining relative complexity values of the Platonic

solids (PS) requires preliminary derivation of equations for

the complexity indices of the respective complete graphs

K4, K6, K8, K12, and K20. However, with the exception

of the third order SC, OC, and OW, Eqs. (10–24) can be

directly transformed into equations for the indices of the

respective complete graphs by substituting ai = V – 1.

The three different equations are shown below:

3SC(KV) =
1

6
V (V – 1) (V – 2) (4V – 11) (25)

3OC(KV) =
1

6
V (V – 1)2 (V – 2) (16V – 45) (26)

3OW(KV) =
1

2
V (V – 1) (V – 2) (13V – 38) (27)

By writing down the relative complexity indices ex-

plicitly in Eq. (7), one immediately proves the equality

of two pairs of such indices:

2SWCr(PS) = 1OCr(PS) =
a

V

i

2

21( )�
(28)

2OWr(PS) = 2SCr(PS) =
a a

V V

i i( )

( )( )

�

� �

1

1 2
(29)

It is noteworthy, that the approximate complexity

measure of networks, called connectedness (Conn)53,54 or

connectance (C),55,56 appears naturally in our scheme as

a relative edge complexity Er (or relative adjacency Ar):

Er =
E

E V( )K
=

2

1

E

V V( )�
= Conn =

A

A V( )K
= Ar (30)

Equations for the local complexity indices (complexity

of a vertex and complexity of an edge) can easily be ob-

tained by substituting Eqs. (10–24) into Eqs. (8) and (9).

One can thus find that the local edge connectivity EV is

half the vertex degree ai:

EV(G) =
E

V
=

1

2
ai (31)

DISCUSSION

The Platonic solids complexity indices were calculated

by Eqs. (1–31) and verified with the computer software

kindly made available by G. Rücker and C. Rücker.57

The values obtained are shown in Tables I and II. The

data for the global complexity indices, as well as from

the direct comparison of the formulas derived, order the

Platonic solids into the series T < C < O < D < I, thus

defining the icosahedron as the most complex structure.

The same conclusion about icosahedron was obtained by

C. Rücker,58 who used the number of cycles per vertex

as a criterion, although the ordering of the five solids

was different (I > O > T > C > D). Our ordering coin-

cides entirely with the ones produced by the Bertz in-

dex,29 and Estrada’s second-order edge-connectivity

index37 reported by Trinajsti} and coworkers.4 Clas-

sifying octahedron as more complex than cube (with six
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Figure 1. Schlegel graphs of the five Platonic solids: T – tetrahedron,
O – octahedron, C – cube, I – icosahedron, D – dodecahedron.



vs. eight vertices at the same number of eight edges)

and, particularly, finding icosahedron to be more com-

plex than dodecahedron (with twelve vs. twenty vertices

at the same number of thirty edges) cannot be regarded

as an artifact. Rather, it is a reflection of the higher local

complexity; i.e., the larger vertex degree in octahedron

(four) and icosahedron (five), as compared to cube and

dodecahedron (three). The same ordering of the five Pla-

tonic solids is preserved with the global values of the

subgraph count, overall connectivity, and overall Wiener

indices. As an illustration, the ordering according to the

global SC values is shown: T(64) < C(2441) < O(3705) <

D(145,168,248) < I(964,957,974). However, the subgraph

walk count restores the ordering to that dictated by the

number of vertices: T < O < C < I < D: 156 (T) < 8,184 (O)

< 26,232 (C) < 732,421,860 (I) < 34,867,843,980 (D), as

do the Hosoya index,35 the Randi} (vertex-) connectivity

index,36 the Wiener index, and resistance distance.3–5,38

The relative complexity concept uses as a standard

the complete graph having the same number of vertices

as the structure under consideration. Indeed, tetrahedron,

which is the smallest Platonic solid and which is describ-

ed by a complete graph, now leads the series with 100 %

complexity. The larger the Platonic solid, the lesser the

chance for it to be close to the complete graph. The ex-

pectation that relative complexity will decrease in the

series of Platonic solids with an increase in their number

of vertices is violated only by the icosahedron, whose

high local symmetry (vertex degree five) orders it before

the cube: T > O > I > C > D.

The two kinds of average complexity assessments,

complexity per vertex and complexity per edge (Eqs. 8

and 9), produce an ordering, I > O > D � C � T, close to

that obtained with the global indices (the ordering of O and

D is reversed). The equality signs refer to Ivd and the first

several orders of the remaining complexity descriptors.
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TABLE I. Total and relative complexity measures of Platonic solids(a)

Index Tetra-

hedron

Octa-

hedron

Cube Icosa-

hedron

Dodeca-

hedron

V 4 6 8 12 20

E 6 12 12 30 30

2SC 12 36 24 120 60

3SC 20 116 56 560 140

4SC 15 333 126 2730 360

1OC 36 96 72 300 180

2OC 108 432 216 1800 540

3OC 228 1824 672 11100 1680

4OC 180 6408 1872 67200 5400

2OW 48 144 96 480 240

3OW 168 1080 552 5340 1380

4OW 120 5640 2352 49680 6960

2TWC 36 96 72 300 180

3TWC 108 384 216 1500 540

4TWC 0 1536 648 7500 1620

Ivd 19.02 48 38.04 139.3 95.10

Er 1 0.8 0.4286 0.4546 0.1579

2SCr 1 0.6 0.1429 0.1818 0.0175

3SCr 1 0.4462 0.0476 0.0688 0.0018

1OCr 1 0.64 0.1837 0.2066 0.0249

2OCr 1 0.48 0.0612 0.0826 0.0028

3OCr 1 0.3577 0.0207 0.0312 0.0003

2OWr 1 0.6 0.1429 0.1818 0.0175

3OWr 1 0.45 0.0498 0.0686 0.0018

2TWCr 1 0.64 0.1837 0.2066 0.0249

3TWCr 1 0.512 0.0787 0.0939 0.0039

Ivd,r 1 0.6891 0.2420 0.3051 0.0589

(a)The relative complexity indices are denoted by subscript »r«. They

are obtained by dividing the total index to the respective value for the

complete graph having the same number of vertices V.

TABLE II. Local (vertex and edge) complexities of Platonic solids

Index Tetra-

hedron

Octa-

hedron

Cube Icosa-

hedron

Dodeca-

hedron

Ev 1.5 2 1.5 2.5 1.5

2SCv 3 6 3 10 3

3SCv 5 19.33 7 46.67 7

4SCv 3.75 55.5 15.75 227.5 18

1OCv 9 16 9 25 9

2OCv 27 72 27 150 27

3OCv 57 304 84 925 84

4OCv 45 1068 234 5600 270

2OWv 12 24 12 40 12

3OWv 42 180 69 445 69

4OWv 30 940 294 4140 348

2TWCv 9 16 9 25 9

3TWCv 27 64 27 125 27

4TWCv 0 256 81 625 81

Ivd,v 4.755 8 4.755 11.61 4.755

2SCE 2 3 2 4 2

3SCE 3.333 9.667 4.667 18.67 4.667

4SCE 2.5 27.75 10.5 91 12

1OCE 6 8 6 10 6

2OCE 18 36 18 60 18

3OCE 38 152 56 370 56

4OCE 30 534 156 2240 180

2OWE 8 12 8 16 8

3OWE 28 90 46 178 46

4OWE 20 470 196 1656 232

2TWCE 6 8 6 10 6

3TWCE 18 32 18 50 18

4TWCE 0 128 54 250 54

Ivd,E 3.170 4 3.170 4.643 3.170



For kSC, kOC, and kOW, the equality sign for tetrahedron

changes to inequality for k = 3, whereas k = 4 suffices to

distinguish between cube and dodecahedron. When the

subgraph walk count is averaged over vertices and

edges, the equality is kept up to the last (V – 1) term;

i.e., the distinction in kSWC between tetrahedron and the

pair cube/dodecahedron occurs at k = 4, and the cube

and dodecahedron are discriminated at k = 8.

One may thus conclude that (except for the global

TWC index, which singles out dodecahedron) the global

and local complexity descriptors SC, OC, and OW identify

icosahedron as the most complex structure, whereas tetra-

hedron is the structure with the highest relative complexity.

The highest degree of complexity of tetrahedron and

icosahedron, found in our study, is essential as an organiz-

ing principle of atoms and molecules into clusters, crystals,

and supramolecular structures. Platonic solids are charac-

terized by a minimum energy configuration, as compared

to other solids having the same number and kind of atoms.

The intra-cubic (»embeddable onto a cubic lattice«) poly-

hedrons tetrahedron, octahedron, and cube can fill 3D-space

and form crystals. Importantly, the tetrahedral structure,

which possesses a 100 % relative complexity, is the domi-

nant crystal structure in the earth’s crust. The extra-cubic

dodecahedron and the icosahedron are non space-filling.

However, in the liquid phase, spherical atoms and mole-

cules (e.g., larger noble gases – argon, krypton, and xenon

– as well as lead) prefer the clustering with the maximum

global and local complexity – the icosahedral one. The lat-

ter has a lower Lennard-Jones energy than crystal struc-

tures but cannot form crystals due to the five-fold symme-

try. Such five-fold symmetry is optimal for the short-range

close packing but it is incompatible with the long-range or-

der and favors amorphous structure.60

The link between the solid geometry principles of

Plato and Archimedes and the chemical assembly of small

building blocks into large supramolecular structures has

been used in the development of a general strategy for the

construction of spherical molecular host systems (e.g.,

liquid clathrates, macromolecular hosts). Icosahedron again

has a central role in this »class of hosts for the new millen-

nium.«61 Large atomic and molecular clusters also prefer

icosahedral configuration. An extreme example of this

class is the molecular packing in icosahedral viruses, in-

cluding the HIV virus.62 Important correlations have been

found between the virus crystal contacts and its biological

function.
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APPENDIX

The details of the derivation of the third-order complex-

ity indices SC, OC, and OW are shown below. The num-

bering of the final equations corresponds to that in the

basic text:

3SC(path(C,D)) = 2SC � (ai – 1) =
1

2
V ai (ai – 1)2 (A1)

3SC(path(T,O,I)) = 2SC �
2 2 1 3

1

( ) ( )( )a a a

a

i i i

i

� � � �

�
=

=
1

2
V ai(ai

2 – 2ai – 1) (A2)

3SC(star(PS)) = V �
a

a

i

i

!

!( ) !3 3�
=

=
1

6
V ai (ai – 1) (ai – 2) (A3)

3SC(triangle(T,O,I)) =
1

3
V ai (A4)

3SC(T,O,I) = 3SC(path(T,O,I)) + 3SC(star) +

+ 3SC(triangle) =
1

6
V ai (4ai

2 – 9ai + 1) (12)

3SC(C,D) = 3SC(path(C,D)) + 3SC(star) =

=
1

6
V ai (ai – 1) (4ai – 5) (13)

3OC(C,D) = �3SC(path(C,D)) + 3SC(star(PS))	 � 4ai =

=
2

3
V ai

2 (ai – 1) (4ai – 5) (16)

3OC(T,O,I) = �2SC(path(T,O,I)) + 3SC(star(PS))	 � 4ai +

+ 3SC(triangle(T,O,I)) � 3ai =
1

3
V ai

2 (8ai – 18ai + 1) (17)

3OW(C,D) = 3SC(path(C,D)) � W(p3) + 3SC(star(PS)) �

� W(star) =
1

2
V ai (ai – 1) (13ai – 16) (19)

3OW(T,O,I) = 3SC(path(T,O,I)) � W(p3) + 3SC(star(PS)) �

� W(star) + 3SC(triangle(T,O,I)) � W(triangle) =

=
1

2
V ai (13ai

2 – 29ai – 2) (20)

In Eqs. (19 and 20), p2 and p3 stand for paths of

length 2 and 3 edges, respectively.
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SA@ETAK

O kompleksnosti Platonskih tijela

Danail Bonchev

Razmatrana je globalna, relativna i lokalna kompleksnost Platonskih tijela. U tu je svrhu uporabljeno

nekoliko novijih mjera kompleksnosti: ukupni broj podgrafova, sveukupna povezanost, sveukupni Wienerov

broj, ukupni broj {etnji i infomacijsko-teorijski indeks izveden za distribuciju valencija ~vorova. Relativna je

kompleksnost definirana kao omjer indeksa kompleksnosti i njegove vrijednosti za potpuni graf, koji ima isti

broj ~vorova kao razmatrano Platonsko tijelo. Tetraedar ima 100 % relativnu kompleksnost, pa je po tome

kriteriju najkompleksnije Platonsko tijelo. Me|utim, globalna i lokalna kompleksnost (definirane pomo}u

~vorova i pomo}u grana) ukazuju na ikozaedar kao najkompleksnije Platonsko tijelo.

COMPLEXITY OF PLATONIC SOLIDS 173

Croat. Chem. Acta 77 (1–2) 167¿173 (2004)


