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Graphs which admit exactly one Kekule structure are here termed »minimally Kekulenoid«
and are suggested to be an interesting class of conjugated m-network structures, which then are
investigated, especially for the alternant case. The inverses of the adjacency matrices of such
molecular graphs are constructed, and found to represent a (generally edge-weighted) adjacen-
cy matrix of a »Kekulenoid transform« graph. These transforms are also studied, and a »multi-
plicative« pairing result is established for suitable circumstances. It is noted that tree graphs
are either non-Kekulenoid or minimally Kekulenoid, and for the minimally Kekulenoid case
the »Kekulenoid transform« are shown to be especially simple. Finally bounds for the HOMO-
-LUMO gap of tree graphs (representing acyclic conjugated polyenes) are obtained in terms of
chemically appealing »conjugated-path« invariants. Some examples are presented, and some

graph invariants

INTRODUCTION

Mathematical chemistry has been formally recognized
only during just the last few decades, with a strong influ-
ence involving graph theoretic work. This special influ-
ence is perhaps quite appropriate in view of its relevance
in the classical core of chemistry, the characterization of
molecular structure, and valence theory. Indeed the ma-
thematical field of graph theory may be surmised to take
its name from usage in chemistry. In particular J. J. Syl-
vester! in 1878 introduces the terminology of »graph« in
mathematics in an article exuberantly reveling in the
possible applications in chemistry where already the
phrase »graphical representation« was in frequent use in
describing the molecular structural formulas with which
Sylvester was so deeply intrigued. Near simultaneously
A. Cayley (who was a friend of Sylvester’s) made? a no-

general chemical consequences relating to »cross conjugation« are identified.

table application to enumeration of alkyl radicals and al-
kanes. But mathematical graph theory was not then well
developed, and Sylvester’s idea of a close interaction be-
tween mathematics and chemistry remained a dream,
though there were a few isolated cases where Sylvester
and Cayley’s ideas were sought to be pursued.? Also in
the mid 1930s G. Polya* further sought chemo-mathema-
tical symbiosis, again through the use of graph theory,
and ended up developing a mathematically fundamental
combinatorial enumeration under group action, though
again for a while the impact on chemistry was marginal.
Starting in the 1930s E. Hiickel, C. A. Coulson, and a
host of other theoretical chemists developed a simple
quantum mechanical »molecular-orbital« model of mo-
lecular electronic structure, which especially for conju-
gated m-networks entailed many graph-theoretically based
ideas, though little inspiration was drawn from mathe-

*  Dedicated to Professor Nenad Trinajsti¢ on the occasion of his 65 birthday, in recognition for his 30 years long fruitful research

in Chemical Graph Theory.

** Author to whom correspondence should be addressed. (E-mail: kleind@tamug.edu)
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matical graph theory which was then but marginally de-
veloped, at least in the direction requisite for »molecu-
lar-orbital« chemical application. A similar situation ap-
plied for other areas of theoretical chemistry: e.g.,
valence-bond theory (as championed by L. Pauling) and
statistical mechanical modelling (as developed by J.
Mayer) both involved graphs, but again without formal
reference to mathematical graph theory. Now in the last
few decades there have been a number of theoretically
oriented chemists who have sought to exploit for chemi-
cal purposes the now better developed mathematical field
of graph theory, with Milan Randi¢ and Nenad Trinajstié
being two such of the leading proponents. Notable in
fostering the field is Trinajsti¢’s> Chemical Graph The-
ory, though also both these researchers (along with their
numerous collaborators) have carried out a great deal of
fundamental chemical graph-theoretical research, and in
wider generality have championed the field of »mathe-
matical chemistry«.

Here application to neutral (homonuclear) conjuga-
ted m-networks is made, particularly to those networks
which are »minimally Kekulenoid« in the sense of hav-
ing but one Kekule structure. Examples of such species
are indicated in Figure 1. Presumably these species are
chemically stable, but having only a minimal number of
Kekule structures, they do not exhibit »resonance« in the
simple sense. Of course, these species should typically
be more reactive than species which do exhibit resonan-
ce (around conjugated 4n+2-circuits). But further such
minimally Kekulenoid species certainly differ amongst
themselves in stability and reactivity. Thence these mini-
mally Kekulenoid species are the natural class of species
to study so as to understand stability issues beyond that
indicated by (the otherwise dominant) »conjugated cir-
cuits«. Surprisingly few researchers seem to have inves-
tigated the general class of minimally Kekulenoid mt-net-
works — but not so surprisingly Randi¢ and Trinajstic®
have looked at this problem, for much the same reasons
as expressed here, though they detail to some extent the
earlier’” »conjugated circuits« theory (which also has
some rather interesting history®). In the present work
these minimally Kekulenoid species are graph-theoreti-

/\/\//\I/\
-

Figure 1. Four examplar minimally Kekulenoid species: 1,3,5-
hexatriene, 3-methenyl-1,4-pentadiene, 1,4-dimethenylbenzene (or
para-xylylene), and fulvene. The edges occurring in the unique
Kekule structure (or perfect matching) are indicated in bold face.
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cally characterized when alternant (or bipartite), and a
set of theorems are developed to culminate for the spe-
cial case of acyclic polyenes in a simple estimate (in the
context of the Hiickel model) for the lowest energy elec-
tronic excitation — namely the so-called HOMO-LUMO
gap. Being the lowest excitation energy, this is a (well-
-recognized) characteristic for the rearrangeability of
electrons, and more particularly for chemical reactivity.

This present endeavor is addressed in the standard
mathematical format of definition/theorem/proof, but to
be mathematical chemistry there should be some chemi-
cal relevance, and here some discussion is directed to
this end. The overall mathematical approach to the so
relevant HOMO-LUMO gap may be simply described:
when non-singular, invert the adjacency matrix, whence
the eigenvalues nearest O (as determine the HOMO-LU-
MO gap of bipartite graphs) become extremal (i.e. maxi-
mal or minimal), and thence are more readily susceptible
to standard approximation techniques. A restriction of
the considerations to alternants (bipartite graphs) facili-
tates the steps of non-singularity determination and ma-
trix inversion, via methodology earlier considered,'0-!!
and a further restriction to acyclic polyenes (Kekulenoid
tree graphs) facilitates the final step of eigenvalue esti-
mation, as earlier indicated.!? Indeed some aspects of
this general plan may be perceived in Godsil’s work.!?
What seems at present the most chemically interesting
results are embodied in the theorems A, B, N, O, P, and
Q. A number of the intermediate results are proved in
somewhat more generality than needed for these final
results (of theorems N, O, P, and Q) but this greater gen-
erality may be more mathematically interesting. In such
regard may be mentioned first ideas involving »Kekule-
noid transforms« and second results concerning »multi-
plicative« eigenvalue pairing, such as seems in fact the
emphasis of the paper!! by Cvetkovi¢ et al. Some of the
pattern in these intermediate results seems suggestive of
even further mathematically (or perhaps chemically) in-
triguing insights not yet proven, but which hopefully
mathematical chemists (such as Nenad Trinajsti¢ and
Milan Randi¢) may enjoy investigating.

It is emphasized that the application of the HOMO-
-LUMO estimates (as in theorems N and P) may be made
without the intermediate mathematical developmental
results. That is, for a stronger chemical focus one might
look at some of the graph-theoretic nomenclature in the
next section, perhaps along with the statements of theo-
rem A and proposition B (giving a neat way to identify
minimally Kekulenoid graphs), then skip ahead first to
the definitions of the invariants P, along with the state-
ments of the associated theorems N, P, and Q, and there-
after to the applications in the »examples« section and
conclusion. In the conclusion some general chemical
consequences with refernce to the topic of »cross conju-
gation« are presented in a less mathematical manner.
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MINIMALLY KEKULENOID GRAPHS

Standard graph-theoretic notation is used, with a graph
G specified by its set V(G) = V of vertices and its set
E(G) = E of edges. Chemically G corresponds to a mo-
lecular structure, most simply of a hydrocarbon, with H
atoms deleted (for the purposes of labeling). In the pres-
ent paper all the hydrocarbons are conjugated so that the
graph then just indicates the 7 network. A subgraph k of
G is termed a perfect matching if every vertex of G is a
vertex of k and is of degree 1 in k. Evidently a perfect
matching corresponds to a Kekule structure of G, with
the edges of x corresponding to double bonds, while
other edges of G are single. Chemically a Kekule struc-
ture k might be viewed as a »hypergraph« with double
bonds strewn about superimposed on G, though in our
mathematical work we view k as a disjoint set of span-
ning edges of G (i.e. as a perfect matching). Graphs with
at least one Kekule structure are termed Kekulenoid,
those without a Kekule structure are termed non-Keku-
lenoid, and those with exactly one Kekule structure are
termed minimally Kekulenoid.

It would be nice to characterize the minimally Ke-
kulenoid graphs, or at least an important subset of them.
A graph is bipartite (or alternant) if the vertices may be
partitioned into two types starred (%) and unstarred (O)
such that any site of one type has neighbors solely of the
other type.

Theorem A. - Let G be a bipartite minimally Kekulenoid
graph G. Then G must have at least one terminal (de-
gree-1) starred vertex and at least one terminal unstarred
vertex.

Proof: The problem of establishing the existence of an
unstarred terminal vertex is first considered. Select a
vertex i from the starred set V4 of sites of G, and make
it the first (and initially the only) member of an »exam-
ined« set Sy of starred sites. Since by hypothesis G has
one Kekule structure k, i must be connected in this k to
a vertex i, in the unstarred set V,, of vertices. If i, is ter-
minal, then a terminal vertex in V, has been found, and
otherwise select a vertex j connected to i, by an edge of
G not in x. Now j€eV, is not in S, so that j may be
added to Sy and j will be connected in k to a new site
Jjo€Vo. If jo is terminal, then a terminal vertex in V, has
been found, and otherwise look for a vertex k to which j,
is connected by an edge in G but not x. If keV, were to
be in the current examined set S, then we would have a
conjugated circuit in hand and be able to make the alter-
native conjugation pattern around the cycle to generate a
second Kekule structure, contrary to the theorem’s hy-
pothesis. Thus (if j, is not terminal) the newly selected
vertex k not in the current S,, may be added to Sy, and
the site k.eV, to which k is connected in K is selected.
Again if k; is terminal, the goal of a terminal site in V,
has been achieved, and otherwise a site / connected to ko
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in G but not in x is selected. Again / eV is noted not to
be in the current S, (again in order to avoid a conju-
gated circuit), and the whole process is iterated, till a ter-
minal site in V,, is found. If the process is iterated to the
last site zo€ V., then there is no site for it to connect back
to (in V4) and so it would necessarily be terminal. The
existence of a terminal site in V is similarly established
(starting with an initial site i in V rather than in V).

Evidently the restriction of theorem A to bipartite
graphs is appropriate, since there are bipartite minimally
Kekulenoid graphs with just one end (as fulvene in Fig-
ure 1) or with no ends (as in Figure 2). Further the oc-
currence of both % and O termini is necessary but not
sufficient for a bipartite graph to be minimally Kekule-
noid. A method to determine whether a graph (with ter-
mini) is minimally Kekulenoid should be of use. To this
end we consider:

Kekulenoid-Test Algorithm. - Given a graph G with at
least one terminus, »recur from the termini« by deleting
a terminal vertex and its adjacent vertex to obtain a new
graph G’ which then is subjected to further recursion via

this algorithm.
()
o—a
© (&)

Figure 2. A site-numbering for an example nonbipartite (or non-
alternant) minimally Kekulenoid species, which also has no termi-
nal vertices.

For a general graph this algorithm might produce
isolated sites or fragments without terminal sites (e.g.,
cycles). But sometimes the algorithm iterates to elimi-
nate all the sites, leaving at completion the empty graph.

Proposition B. — 1f for a graph G this algorithm contin-
ues to completion to yield the empty graph, then G is
minimally Kekulenoid, and the pairs of vertices deleted
in the algorithm identify the unique Kekule structure of
G. Moreover if G is a minimally Kekulenoid bipartite
graph, then this algorithm necessarily completes.

Proof: In the algorithm one starts at a terminal vertex i,
say in V4 connected to i€V, and recognizes that if G is
to have a Kekule structure k, then i (being a terminus)
must have the same edge {i,i} in x as in G. Then in
eliminating i and i,, from G, one is left with a new graph
G’ which must have exactly one Kekule structure if G is
to have one. Clearly, finally reaching the empty graph
has identified G as minimally Kekulenoid. Further if G
is bipartite, then if G is to turn out to be minimally
Kekulenoid it must have termini, whence also G’ is min-
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imally Kekulenoid and bipartite, so that the process nec-
essarily goes to completion with the empty graph.

Thus this algorithm provides an efficient (order ~N)
method by which to determine whether or not a bipartite
graph G has a unique Kekule structure k, indeed con-
structively giving this k (if this G is so minimally Keku-
lenoid). Moreover the approach works on some non-al-
ternant species, such as fulvene (in Figure 1), but not
others (as that of the bicyclo species in Figure 2). Yet
further the algorithm may be straight-forwardly modi-
fied!3 to test for (not necessarily minimal) Kekulenoidi-
city for general graphs.

The adjacency matrix A(G) = A of a graph G has
rows and columns in correspondence with the vertices,
such that the only non-zero elements occur for positions
i,j (and j,i) for {i,j}€E whence such an element is 1.
Within the context of the Hiickel model such an adja-
cency matrix gives (up to a scalar multiple and an addi-
tive shift) the molecular-orbital (MO) Hamiltonian ma-
trix for a conjugated m-electron network.

Theorem C. — If G is an N-site minimally Kekulenoid bi-
partite graph, then det A = (-1)M2.

Proof: This result is fairly readily seen via an old result
of Sachs'* which gives det A for a general graph in
terms of spanning subgraphs with components which are
either cycles or isolated edges. [Indeed Sachs’ theorem
goes on to similarly characterize all coefficients of the
secular polynomial associated to A; and much of what
we presently need is also found in independent works by
other authors, somewhat as indicated on page 36 of
Ref. 15]. To prove the present result without recourse to
Sachs work note that minimally Kekulenoid bipartite G
may contain one or more cycles, but for our present
case, what disjointly remains after deleting one such cy-
cle does not admit a Kekule structure — for with pairs of
alternating (or conjugated) patterns possible around such
a deleted (necessarily even) cycle, there would then be
more than one Kekule structure (contrary to hypothesis).

A tree is defined to be a connected acyclic graph,
and is characterized by the fact that between any pair of
vertices i, jeV there is a unique path.

Corollary D. — An N-site tree has either 0 or 1 Kekule
structures (whence respectively either detA = 0 or detA
= (-2,

This is (essentially) also established in Ref. 11. The
algorithm of proposition B along with theorem C then
give a ready criterion by which to judge whether an al-
ternant is minimally Kekulenoid or not, and granted this,
then whether detA is 0 or not, and correspondingly whe-
ther A is singular or not. In particular, the adjacency
matrix A for a tree T has an inverse if and only if T has
a Kekule structure (or perfect matching). Thence we
proceed with consideration of the non-singular case.
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MATRIX INVERSION AND GRAPH PATHS

Some results leading toward matrix inversion for such as
a graph’s adjacency matrix is now to be considered.
Given a matrix M and sets a and b of row and column
labels, let M, ;) denote the matrix obtained upon dele-
tion of the rows of a and the columns of 4. For n, m €V
let MU',y denote the matrix obtained from M by setting
all elements in row n and column m to O except the
(n,m)th which is set =1.

Lemma E. — Let M be an NxN matrix with non-zero ele-
ments outside the diagonal confined to positions (i, j)
corresponding to edges {i,j} of a graph G. Then

mon
det My = X DI My, - Mpeo.o My det Mgz

where the sum is over paths © = (a,b,c,d,....y,z) in G di-
rected from m to n (i.e., m = a and z = n), and [(7) is the
length of the path m.

Proof: The proof follows somewhat an earlier one!? for-
mulated for the case that G is a tree, though much of the
idea is implicit in even earlier work (involving tracing
out permutative cyclic »paths« in determinants, e.g., as
in Sachs work in Ref. 14). For the determinant of
E\/l,(rl\l77)E M

det M" = Yp (- DP [Tx (M )epy

where the sum is over all N! permutations P of indices of
V, (-1)P is the parity of P, and P(k) is the image of keV
under P. But each term (identified by a P) is associated
to a set of disjoint cycles, with each cycle contributing a
separate factor, as

+ (M/)ah(M/)h(" -~-'(M,)xy(M/)yz (M,)za

for the cycle of P which carries a~b~c-...~y~z~a, and
the + sign depends on the parity of the cycle, which is -
for a cycle of an even number of members and + for an
odd number of members. For det M'(,,,, the non-zero
terms must evidently entail a cyclic permutation sending
m~n, and the remaining portion of such a cycle may be
viewed as a path  from n to m. At the same time the
other disjoint cycles simply build up the determinant for
the portion of M’ remaining after deletion of the rows
and columns corresponding to the sites of w. Further the
parity of the cycle moving m~n is just the length /(m) of
this path 7. Thence one has

m=n

det M= > (- 1) (M) (M )y (M) 1+ det Mg

Further det M’ is just that part of det M for permutations
P which carry m~n, except that the factor M,,,, is miss-
ing. Anyway the lemma is proved.

A (self-avoiding) path in a Kekulenoid graph G is
called a conjugated path with respect to a given Kekule
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structure k if the path has its own Kekule structure
which is a subgraph of k. Indeed this definition coinci-
des with that of Randi¢ and Trinjasti¢,° though they term
them »conjugated chains«. For minimally Kekulenoid
graphs the particular Kekule structure x is naturally un-
derstood. The number of disjoint edges (i.e., of double
bonds) in the Kekule structure of a conjugated path vy is
denoted k(y), and thence is just half the (necessarily
even) number of sites of y. As an example, with the ver-
tex numbering for the minimally Kekulenoid bicyclo-
hexatriene of Figure 2, there are 3, 4, and 4 conjugated
paths of different lengths

k(y) =1:(1,2), 3.4), (5.6)
k(y) =2:(1,2,34), (2,1,3,4), (6,5,4,3), (5,6,4,3)
k(y) =3 :(1,2345,6), (12346.5), (2,1,3450), (2,1,3,6,5)

With these definitions in hand, the result of lemma E
can be specialized to

Lemma F. — Let A be the adjacency matrix of a mini-
mally Kekulenoid bipartite graph. Then

cpii.j
det A’ = ~(=DV2 3 (1) k®)
v

where the sum is over all conjugated paths y between i
and j.

Proof: Here the restriction from the expression in lemma
E to paths m which are conjugated paths occurs because
of conditions for the remnant part det M to be
non-zero (when M = A). In particular for a term associ-
ated with a permutation P in this remnant part to be
non-zero, the permutation P could not involve any 1-cy-
cles since all diagonal elements of A are 0. Nor could it
involve any odd cycles because G is bipartite. As a con-
sequence only even cycles (including possibly 2-cycles)
could remain, thereby implying that the path m must
have an even number of sites, and have a Kekule struc-
ture x;; on the path m. But for such a contributing permu-
tation P there is associated at least one Kekule structure
K(z) on the part of G remaining after deletion of all the
sites of m: that is, each transposition (2-cycle) of P would
locate an edge of such a Kekule structure, and any high-
er even cycle would if present allow 2 manners of conju-
gation around the cycle. But G being minimally Keku-
lenoid such higher cycles do not occur in the part of G
outside of 7. Then combination of x; and K, together
yields an overall Kekule structure k which evidently must
be the unique one (since G is minimally Kekulenoid). In
particular this implies that x, is a subgraph of k. The
phase associated with a conjugated path y is (from lem-
ma E) just -1 to a power which is the length I(m) of =,
which is odd (for x; to occur). Now A (55 is still the
form of an adjacency matrix for a minimally Kekulenoid
bipartite graph with N-I(m)-1 vertices, so that by corol-
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lary D one has det A ;) = (- DIVU™®-112 Thus noting
that k(m)= [l(m)+1]/2 it is seen that overall a phase
(- DHM2(=1)™ occurs, and the proof is completed.

Now the well-known (Cramer’s rule) result that
det(Ail)l‘j = det A’(}‘l)/ (det A)
along with corollary D, then leads directly to:

Corollary G. — Let A be the adjacency matrix of a mini-
mally Kekulenoid bipartite graph. Then (A™!); =0 un-
less there is a conjugated path between i and j, whence

cpii,j
(ADy=-2 D
Y

where the sum is over conjugated paths between i and j.

This result, which has also been established in Cvet-
kovi¢ et al.'! for the case of trees, and in (even in a
somewhat more general manner) in Ref. 10. This result
can be neatly rephrased if one describes the effective
number of conjugated paths between two points i and j
as the difference between those with numbers of sites
being odd or even multiples of 2 (i.e., paths with respec-
tive lengths 4n+1 or 4n-1). Then this theorem gives the
(i,j)th element of A~! as this effective number of conju-
gated paths between i and j. It is emphasized that in the
case of trees, there is just one path between two vertices,
so that the elements of A~! take but one of the three val-
ues 0, -1, or +1. Moreover, it turns out that these signs
may be »eliminated« under suitable conditions characte-
rized in terms of an auxilliary graph: for G with a Keku-
le structure k (viewed as a spanning subgraph with every
vertex of degree 1), define the x-contracted graph G,
to have vertex set V(G,,,) = E(x) and edges of G, be-
tween {ij} and {k/}eV(G,,) if there is an edge of G
between a vertex of {i,j} and a vertex of {k}. Also we
recall that for an adjacency matrix A(G), with a normal-
ized eigenvector v with components v;, one says the as-
sociated eigenvector density (distribution) is |v;|2, i EV(G).
The »sign-eliminatability« result then is:

Theorem H. — Let G be minimally Kekulenoid with G,
bipartite. Then the matrix X with elements the absolute
values of those of A~! has the same eigen-spectrum as
A-1, Moreover there is a correspondence between the
eigenvector densities for X and A.

Proof: Each pair of neighbor sites of G connected by an
edge in the unique Kekule structure k of G is contracted
to a single site of a contracted graph G, which by hy-
pothesis is bipartite. Thence the sites of G may be parti-
tioned into two sets V,(G) and V_(G) corresponding to
the »starred« and »unstarred« sites of G,,; that is,

i,j€V+(G) < {l’]} E\]‘A'(Gcon) and

5jeVAG) = {i,j3€Vo(Geon)

Croat. Chem. Acta 77 (1-2) 179-191 (2004)
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Then a diagonal matrix U may be introduced with ele-
ments U; = +1 as i€V, (G). Since U is unitary (with U~!
= Ut = 1), it preserves the eigen-spectrum of A~! under
a similarity transformation (here UA-1U-!). But it is
readily seen that UA-1U-1 =X so that if v is an eigen-
vector of A1, then Uv is an eigenvector of X with the
same eigenvalue. Thus A~ and X have the same eigen-
spectrum, and corresponding eigenvector densities. More-
over since A~ and A have the same eigenvectors, it fol-
lows that X and A have corresponding eigenvector den-
sities, and the theorem is proved.

Moreover one may specialize this result to an im-
portant case with the observation that if G is a Kekule-
noid tree, then G, is also a tree, and therefore bipartite.
Thence one has:

Corollary I. — Let G be a Kekulenoid tree. Then the ma-
trix X with elements the absolute values of those of A~!
has the same eigen-spectrum as A~!. Moreover the eigen-
vector densities for X and A correspond.

This result for the eignevalues has also been proved
by Cvetkovié¢ et al.!' and by Godsil'? (with the demon-
stration that X and A~! have the same characteristic po-
lynomials.) It may be further noted that the eigenvector
densities are not graph invariants unless the associated
eigenvalue is non-degenerate. However regardless of de-
generacy correspondences of eigenvector densities still
apply — in fact the phase matrix U in the proof of theo-
rem H allows a correspondence of eigenvectors. Yet fur-
ther Mukherjee and co-workers!®!7 have studied such
graphs, giving several examples, and futher using their
results in the evaluation of eigenspectra of more general
graphs.

DIGRESSION ON KEKULENOID TRANSFORMS

Since the matrices A~! of the preceding section, and
even more more especially the X, resemble adjacency
matrices for graphs G¥, it is natural to define each such
graph as the Kekulenoid transform of a minimally
Kekulenoid graph G. Some examples of such transforms
GKX for the case of G being a tree are given in Figure 3,
where there is a suppression of the signs as arise without
the imposition of theorem H (which allows their elimi-
nation). Cvetkovi¢ er al.!! define a »pseudo-inverse« of
G which is'8 closely related to GK (and often is the same
as GK). Mukherjee and co-workers'®!7 define »recipro-
cal« graphs simply as those with eigenvalues in inverse
pairs, and illustrate several classes (each a homologous
seqence) of such (also unweighted) graphs, which then
turn out to be graphs for which G = GX. Thence the cur-
rent transform GX may be surmised to be of some funda-
mental interest, and some points may be noted (several
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Figure 3. Kekulenoid transforms for some acyclic (minimally Keku-
lenoid) polyenes, with G and GK separated by the transformation
symbol of a »squiggly arrow«. The drawings do not simulate che-
mically preferred conformations for G, but rather configurations

are chosen such that upon making the transformation to GX while
fixing the positions of the sites the result avoids crossing bonds.

of which are noted by Cvetkovi¢ et al. ' in the circum-
stances that their »pseudo-inverse« coincides with G¥):

Proposition J. — For a minimally Kekulenoid graph G,
 the numbers of vertices of G and GX are the same;

 the numbers of terminal vertices of G and GX are the
same; and

e both G and GX are Kekulenoid.

Proof: First, the property that G and GX have the same
number of vertices is evident, since A~! and X are of the
same size as A. Second, whenever G has a terminal ver-
tex i, there is a unique adjacent vertex i’ which is a ter-
minal vertex in but a single conjugated path (i',i), so that
(by lemma F) the sole non-zero matrix element involv-
ing i’ in GX is that connecting it to i, and i’ is a terminal
vertex in GK. Third, the same pairs of sites paired in the
unique Kekule structure of G are seen also to be pairable
as a Kekule structure in G¥. Fourth, the reciprocity of
the eigenvalues for G and GX is a direct consequence of
the definition of GX in terms of the inverse of the adja-
cency matrix of G.
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Overall proposition J indicates that there is a degree
of similarity between G and GK, with there sometimes
being a further degree of likeness:

Proposition K. — If a minimally Kekulenoid graph G is
bipartite, then GX is also, and the sets of vertices of dif-
ferent types (% and ©) in G and GK match.

Proof: Granted that G is bipartite, every conjugated path
of G is between sites of opposite types (% and O), so
that (again via lemma F) the bipartitioning of vertices
for the two graphs must be the same.

Because of the now established degree of similarity
of G and GK, it is perhaps not surprising that sometimes
G and GK are isomorphic, as occurs in some cases in Fi-
gure 3. Some further examples for minimally Kekuleno-
id cycle-containing bipartite G are given in Figure 4.

Further because GK is developed to be the graph
with adjacency matrix the inverse of that of G, we have:

Proposition L. — For a minimally Kekulenoid G, the ad-
jacency-matrix eigenvalues of G and GX are reciprocals
of one another. The eigen-spectra of G and (GX)X are the
same.

In the case that G and GX are isomorphic (denoted
=, including the transformation of »sign-elimination),

“
Jy O
|

>

™~
L -

Figure 4. Kekulenoid transforms for some cycle-containing mini-
mally Kekulenoid alternants. Alternative, more chemically pleasing
configurations (or embeddings) to represent either the parent
graph G or the transform GK sometimes are also indicated
(whence the different embeddings of the same graph are sepa-
rated from one another by an equivalence sign =).
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the parent G is seen to have adjacency-matrix eigen-
values with an interesting property:

Corollary M. — For a minimally Kekulenoid tree G with
GK=G, A is its own inverse (upon making a suitable
permutative similarity transformation, permuting both
rows and columns of A in the same way, and the simple
diagonal similarity transformation of theorem G). Also
the eigen-spectrum for G consists of pairs of eigenvalues
which are reciprocals of one another.

Indeed one might describe this as a »multiplicative«
pairing property, in reminiscence of Coulson and Rush-
brooke’s!?20 »additive« pairing property (of eigenvalues
occurring as + and - additive inverses, for bipartite graphs
with no non-bonding MOs).

Even when GK and G are different there often seems
to be a vaguely suggestive degree of similarity, perhaps
beyond that indicated in propositions J and K. See also
the Figure 5, where the signs (for the edges) are suppres-
sed when possible (via theorem H, though when they
cannot be suppressed, they are then indicated with a -
sign in the diagram). Often in the examples given, the
Kekulenoid transform of a Kekulenoid transform gives
the original graph back. Indeed this might be imagined
to often occur since as noted in the second part of propo-
sition L, G and (GK)K are iso-spectral.

Figure 5. Kekulenoid transforms for additional minimally Kekule-
noid species, entfailing some (non-unit) weights when relevant.
When there are both a + and - edges between the same pair of
vertices, they cancel, but the result is indicated by a dotted edge.

Croat. Chem. Acta 77 (1-2) 179-191 (2004)
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BOUNDS FOR THE HOMO-LUMO GAP
OF TREES

Notably the results (but not the proofs) of this section
may be readily understood without attending to the bulk
of the preceding results. Some standard graph-theoretic
nomenclature (defined in earlier sections) is needed — in-
cluding the less common definitions of »minimally Ke-
kulenoid« and »conjugated path«. In a minimally Keku-
lenoid graph G (which by definition has exactly one Ke-
kule structure) a conjugated path is an odd-length path
with its own Kekule structure which is a subgraph of the
Kekule structure of G. For a graph with adjacency ma-
trix A let A=A(G) denote the difference between the two
eigenvalues closest to 0. For a neutral hydrocarbon with
a bipartite graph this is just the gap between highest-oc-
cupied MO and lowest-unoccupied MO within the con-
text of the Hiickel model. Let p;(G) = p; be the total
number of conjugated paths which initiate at vertex i of
a Kekulenoid graph G. Then further define some inva-
riants

Pi(G) = X pi
PyG) =3 p?

cp
P3(G) EZ PiDj
{i.s}

where the first two sums are over all vertices of G, and
the third sum is over all pairs of vertices between which
there is a conjugated path. These conjugated-path inva-
riants clearly encode information about conjugation pat-
terns and chemically might naturally be expected to cor-
relate in some manner to stability and reactivity. This we
seek to do by way of using these invariants to bound the
HOMO-LUMO gap A:

Theorem N. — For an N-site minimally Kekulenoid tree,
ZN/PI > 2P2/P3 > A < (2P2/N)1/2

Proof: The proof is motivated by and makes use of cor-
ollary J and the standard Rayleigh-Ritz variational prin-
ciple, which has been used elsewhere?! to set up a set of
often good lower bounds to the maximum eigenvalue
Amax Of @ matrix such as X. In the current context with
the choice of an underlying (column) vector ¢ with all
components =1, these previous results give lower bounds
to )*max

(@TX) / (pTd) = Py/N,
(OTX3P) / (pTX2D) = P4y/P,, and
{(OTX2P) 1 (PT)}172 = { PN}

where ut denotes the (complex conjugate) transpose of
u. Since the eigenvalues of X and A are inverses, these
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bounds then lead to the first three upper bounds of the
present theorem for A = 2/4 .

Additional higher order invariants turn out to be de-
finable, and useable in higher order bounds to the
HOMO-LUMO gap. To this end define p@=¢ as the
N-vector with all components =1, and then recursively
define p®+D as the vector with components

cpii~ j

p(’“‘l)i = Z p(n)J
J

where the sum is over all conjugated paths from site i to
any other site j. Then

Proposition O. — Let G be an N-site acyclic Kekulenoid
graph with p®™ as above. Then

Yip™; p™;
depends only on the sum m+n, and gives the graph in-
variant P,
Proof: In the notation of theorem H, the sum of this the-
orem is clearly

p(m)‘rp(n) — (I)‘I'X‘I'an(b — (I)‘I‘Xm+n¢ - Pm+n'

Thence a sequence of conjugated-path invariants P,,
results, with Py, P,, and P5 as already considered in the
preceding paragraph. Now the whole sequence leads to
further HOMO-LUMO gap estimators:

Theorem P. — Let G and P,, be as in proposition O. De-
fine three sequences

Seven 1 2(Py/P)'2, 2(Py/Py)'2, 2(Py/P¢)'>....
Soaa 1 2(P1/P3)'2, 2(P4/P5)!2, 2(Ps/P7)'2,...
Sz : 2/&1, 2//12, 2/},3, 2/2«4,

with 1,, = {B + (B> + AC)2}/A, where A = (P, Poyio—
Pyni®)s B = (PonssPon=PonsaPomi)2, and C = (Pyyp®=
P;,,..3P>,.1)- Then each sequence separately converges to
the HOMO-LUMO gap A(G). Further the convergence
for S.yen and S, is monotonic from the upper bound side.

Proof: Much as in theorem N the proof is motivated by
and makes use of theorem H and the standard Rayleigh-
-Ritz variational principle, which has been used else-
where?! to set up sequences converging to the maximum
eigenvalue 4,,,, of an adjacency matrix such as X. Much
as in theorem N the sequences of lower bounds converging
to Amax give sequences of upper bounds converging to
A =2/A ., this time using theorems G and H of Ref. 21.

Theorem Q. — Let G and P,, be as in proposition O, and
p; be as just preceding proposition O. Then the quan-
tity (p“™,)%/(P,,,)""* approaches the common density of
the HOMO and LUMO orbitals on site i.

Proof: The vector p™ is identified as a power-method
approximant to a linear combination of the maximum
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and minimum eigenvalues of X. Generally the combina-
tion arises even in the large-m limit because they are of
equal magnitude, as a consequence of the bipartiteness
of the graph GK corresponding to X. But as a further
consequence of the Coulson-Rusbrooke pairing theo-
rem!71® these two eigenvalues have eigenvectors with
the same density. See also corollary J. The density for
p™ at site i is ~ (p'™,)2, which if normalized entails di-
vision by the factor (p™*tp)I2 which by proposition
O is just (Py,,)"2.

The type of bounds indicated in theorems N and P
have been found?! to be quite accurate, and the se-
quences rapidly converging, in a slightly different con-
text. If desired, the (relative) amplitudes of the actual
HOMO and LUMO eigenvector could be traced out via
the phase transformation U in the proof of theorem H.
The examples of the next section may be understood
solely in terms of the results of N, O, P, and Q.

As an aside, it may be noted that a slightly more in-
volved methodology ends up with results much like that
of theorems N and P carrying over to an enlarged range
of minimal Kekulenoids, beyond acyclics. In particular a
minimally Kekulenoid graph G sometimes has an in-
verse A~! from which signs may be simply deleted by a
diagonal unitary similarity transformation, as described
in the proof of theorem H. Then G may be termed sign-
eliminatable, and one has:

Proposition R. — Let G be a sign-eliminatable minimally
Kekulenoid graph. Then the bounds of theorem N hold
as also do the bounded convergences of theorem P.

Argument: The proof is precisely as in the previous the-
orems, but the earlier theorems have been stated sepa-
rately, since there is in them an especially ready criterion
to recognize whether G is sign-eliminatable — namely the
sufficient (but not necessary) condition that G is a tree.

Sufficient conditions for sign-eliminatability are
given in theorem H. Notably this condition is not neces-
sary, as witnessed by dimethenyl-cyclobutadiene, ap-
pearing in Figure 4.

EXAMPLES

The accuracy of the bounds might be tested in applica-
tion to particular cases, such as in the sequence of (mini-
mally Kekulenoid) acyclic polyenes whose first few
members are indicated in Figure 6. The nth of these
Kekulenoid trees with N = 2n m-centers is denoted by
T, and the local conjugated-path counts p; (= p(1);) are as
indicated also in the figure. These trees are of the special
class of »self-inverse« structures (for which the eigen-
-spectrum is multiplicatively paired, such that for every
eigenvalue A there is a corresponding one 1/1). A picto-
rial manner of generation of the higher-order counts p™,
for the example of Tj is indicated in Figure 7, and this
leads to different order conjugated-path invariants,

2 3
1
i ll) 1|J1\|1 1
1 2 2 2 2
Figure 6. The first four members Ty, Ty, T3, T4 of an exemplar se-
quence of Kekulenoid trees.

1 3 5 11 19
1 1 2 2 4 4 7 7 15 15
Figure 7. The recursive generation of the p™; m=0, 1, 2, 3 for T3.

P0:6,P1: 10,P2:20,P3:38,P4:74,
Ps = 142, Pg = 276,...

As a consequence one obtains sequences of bounds
to A for Tj:

Seven : 1.095445, 1.03975, 1.03559,...
Seaq : 1.02598, 1.03523, 1.03523,...
S, : 1.03654, 1.03541, 1.03529,...

Evidently each of these sequences approaches quite
rapidly the exact HOMO-LUMO gap of A =6 -2~

1.03527.
As an aside it may be illustrated that the present ap-

proach can also be used to obtain exact results, e.g., for
butadiene (T,), as indicated in Figure 8, where in addi-
tion to the first few recursions for the p®™, the general
recursion pattern is also indicated, from a mth-stage situ-
ation with local counts A and B at terminal and interior
sites to the next stage where the corresponding local
counts could be denoted A’ and B'. Then it is seen that

BRES

or if expressed in terms of our unabbreviated notation

(m+l) (m)
[p end]:(l lj(p endJ
(m+) (m)
P int l 0 P int
1 2 A A+B
1 1 R 1|/|1 S BIA —— AIA
2 A A+B

1

Figure 8. The general pattern of recursive generation of the p™);
for T2.
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where the subscripts identify end and interior sites of T».
As a consequence the little 2 x 2 »transfer matrix« ap-
pearing here governs the behavior of the p®); The re-
cursion is conveniently solved upon considering the form
the recursion takes if the transfer matrix is diagonalized,
and one is lead to

P"ena = Co6" + C-E ™ and
P i = Co&ym 4+ Cgm !

with &, = (1 £ J5)/2 the eigenvalues of the transfer ma-
trix. Asymptotically (for m~c) the maximum eigenvalue
(&,) dominates. But in this limit the approximants for A
become exact (as noted in theorem P), and the p™ ap-
proach (up to normalization) a vector giving the density
of the HOMO and LUMO (as noted in theorem Q). That
is, A = (1+\/§) and the respective densities at the end
and interior sites are £,9T and 9, with 9T a suitable nor-
malization.

The HOMO-LUMO site density may be obtained ei-
ther as an estimate from the numerical progression of the
p™ (used in generating the P,,) or as an exact limiting
(m~<) result from the recursive analysis, and the result
has implications. Notably this density is larger for the
terminal sites of butadiene, as is consistent with these
sites’ higher reactivity, say to the addition of bromine,
which adds selectively to the terminal sites (as noted
over a century ago by Thiele?? in developing his theory
of partial valence and bond delocalization).

Though this technique to make exact solutions gen-
erally becomes more involved (with larger transfer ma-
trices for larger graphs G), it turns out rather simply to
apply in the long-polymer limit for T, Within the bulk
»interior« of such a high-polymer chain T, one antici-
pates that there are just two counts p‘; at the two types
(degree 1 and 3) of translationally inequivalent sites in a
monomer unit. If at a given stage m these two counts
might be denoted by A and B, as indicated in the first
part of Figure 9, then the counts (A’ and B’) at the next
stage m+1 can be determined. Notably a conjugated path
starting adjacent to a degree-1 site is at the end of just a
single such path: that of length 1 to the adjacent de-
gree-1 site. But starting from an interior degree-1 site
one sees that there are just three conjugated paths: one
of length 1 to the adjacent degree-3 site, and two of

A 2A+B

A A 2A+B 2A+B

Figure 9. The general pattern of recursive generation of the p(™);
in the (deep) interior of a very long chain T,,.
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length 3 to the degree-1 sites in the adjacent monomer
units. Thence, as indicated also in Figure 9,

A'"=B+2A and B'=A

or if expressed in terms of our unabbreviated notation

p(W1)a _ 2 1 p(M)tL
p, ) L1 o)(p™,

Again a 2 x 2 transfer matrix arises, and leads to so-
lutions

p(m)a - C+.§+m + C,'é,m and
p(m)b = C+.§+m71 + C,'é,mil

where now & izli\/a are the eigenvalues of the current
transfer matrix. Of course the maximum root here domi-
nates in the large-m limit, whence one also has

P, =nA(1+¢&,) §+m71
and the HOMO-LUMO gap is
A=2/E, =2(2-))

which is exact in the limits that n—oco and m—co. Again
the relative values of the p™; allow a prediction of rela-
tive reactivities, with the degree-1 sites (also again) be-
ing predicted to be more reactive (in the sense of having
higher HOMO-LUMO densities).

The oligomers T, are rather special, and the whole
eigen-spectrum may be analytically obtained via con-
ventional eigenvalue techniques (as noted in Ref. 23,
though these authors have an error in their formulas).
The corrected adjacency-matrix eigenvalues are

gj. = cos[jm/(n+1)]= {1+ cos’[jm/(n+ D]}, j=1-n
along with the negatives of these values. Thence of course
the HOMO-LUMO gaps are also obtainable analytically.
Still this sequence provides a nice test of the current es-
timators for A. Some part of the conjugated-path counts
may also be carried out in general. For general T, one
may verify that

PO= 2n, P1=4l’l—2, P2= 1071—10,
P3=24n-34, Py= 58n— 82, Ps = 140n — 294

and utilize these in various estimates for A. The behav-
ior of the even sequence S.,., is indicated in Figure 10
for a few different T,. Anticipating exponentially fast
convergence, we have plotted logarithms of errors for
the approximants from the even sequence of theorem P.
In fact the convergence does seem to be exponentially
fast, and similar tests with the two other sequences of
approximants leads to similarly rapid convergence.
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Figure 10. A plot of the logarithms (base-10) of the deviations of
the approximants A, from the exact gap A as a function of
the order m of approximation, for a few different trees, T3 Ty, Ts
and Ty in proceeding from the left to the right.

CONCLUDING REMARKS

Here we have introduced or refined several novel graph-
-theoretic concepts, proved a suite of related theorems,
and established some graph-theoretic (upper-bounding)
estimates for HOMO-LUMO gaps of minimally Kekule-
noid conjugated networks. Special focus has been directed
to acyclic (Kekulean) polyenes, such as incidentally might
be mentioned have recently been?* extensively enumer-
ated (and otherwise graph-theoretically characterized),
the number of structural isomers much exceeding a mil-
lion by N = 30 sites. Some illustrative example applica-
tions of the present results for the HOMO-LUMO gap
have been made.

But it is emphasized that beyond quantitative formu-
las, our present results, especially as indicated in our ex-
ample section, indicate some general qualitative chemi-
cal conclusions, for minimally Kekulenoid acyclic poly-
enes:

(1) In the comparison of different such species, the
HOMO-LUMO gap A is smaller if there is a larger
profusion of conjugated paths. [The longer the conju-
gated paths, the smaller the gap.]

(2) In the comparison of reactivities of different sites
within a given such species, sites from which there
initiate greater numbers of conjugated paths are more
reactive. [In particular, terminal (degree-1) sites are
more reactive than the adjacent sites.]

The first of these general conclusions is seen from
the formulas (of theorems N and P) for the A approxi-
mants (involving the conjugated-path invariants), and
further this general conclusion might be chemically ra-
tionalized: for if there are few conjugated paths, then a
system might be anticipated to act like a small polyene
(e.g., ethylene or butadiene) also with few conjugated
paths, and so like the small molecules manifest larger
gaps A. Further the theorems give a quantitative mean-
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ing to »profusion« in this first general conclusion. The
second general conclusion is seen in the manner in
which the higher-order conjugated-path counts p™; de-
velop (to give the HOMO and LUMO densities as indi-
cated in theorem P), and this result might be rationalized
by arguing that a site from which many conjugated paths
initiate has longer-range contributions to its bonding
such as can then be more readily broken to form addi-
tion compounds. Moreover, as we have already noted
this second general conclusion is in agreement with
some (limited) experimental observations.

Of particular chemical interest is that our results evi-
dently relate to what in a fair body of experimental
chemical literature is often called cross conjugation. See,
e.g. Refs. 25, 26, 27, 28, 29. Cross conjugation occurs
when one double bond, say B, is conjugated to two oth-
ers, say o and vy, while o and y do not lie in a common
conjugated path. As a consequence cross conjugation
delimits the length of conjugation paths, so that the two
chemical conclusions above for acyclic (Kekulenoid)
polyenes might be restated as:

(1") In the comparison of different such species, the HOMO-
-LUMO gap A increases with cross conjugation.
(2")In the comparison of reactivities of different sites
within a given such species, sites at which cross con-
jugation occurs are less reactive. [In particular, ter-
minal (degree-1) sites are more reactive than the ad-

jacent sites.]

The earlier largely experimentally oriented chemical
considerations seem primarily focused on cross conjuga-
tion as an alternative structural feature besides linear and
cyclic conjugation, and much of the focus seems to be on
(often non-alternant) cycle-containing species with cross
conjugation and sometimes with hetero-atoms. Thus
though this chemical interest is broader than the focus
attained here, the quantitativeness of the present resul-
tant consequences may be of much interest in this area.

But further much of our current general conclusions
perhaps often extend beyond acyclics to general minimal-
ly Kekulenoid alternants (though our intermediate theo-
rems reveal that there can sometimes arise cancellations
between different conjugated paths, of suitable different
lengths, so as to reduce effective conjugated-path counts).
The idea that conjugated paths and particularly their counts
relate to stability and reactivity seems chemically natural
as these encode some information about conjugation pat-
terns, which should have some manifestation beyond that
of conjugated circuits and their counts, as also proposed
in 1987 by Randi¢ and Trinajsti¢.° Indeed they further
emphasize the likely crucial character of conjugated paths
when there are no conjugated circuits. Thus the present
use of conjugated paths to characterize HOMO-LUMO
gaps and local reactivities of minimally Kekulenoid spe-
cies provides a quantitative realization of Randi¢ and Tri-
najsti¢’s idea that such paths should be chemically rele-
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vant. Presumably even beyond the case of minimally
Kekulenoid hydrocarbons, conjugated paths should turn
out to be of chemical relevancy.

In the present development of the HOMO-LUMO gap
estimates, some novel mathematical ideas have been de-
scribed and inter-related, including: adjacency-matrix in-
version, conjugated paths, and »Kekulenoid transforms,
at least in the context of minimally Kekulenoid graphs.
Perhaps other chemical graph theoreticians such as Ne-
nad Trinajsti¢ or Milan Randi¢ may find intriguing pos-
sibilities with the approaches here taken to these ideas.
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SAZETAK

Minimalno-kekulenoidne n-mreZe i reaktivnost aciklickih konjugiranih poliena
Douglas J. Klein i Anirban Misra

Grafove koji dopustaju samo jednu Kekuléovu strukturu autori su nazvali minimalno-kekulenoidni gra-
fovi. Autori smatraju da oni predstavljaju zanimljivu klasu konjugiranih m-mreZa, koje su istraZili, narocito za
slucaj alternantnih struktura. Konstruirane su inverzne matrice susjedstva takovih molekularnih grafova i na-
deno je da predstavljaju (opce bridno-utezane) matrice susjedstva kekulenoidno-transformiranoga grafa. Te su
transformacije istraZzene. OpaZeno je da su stabla ili nekekulenoidna ili minimalno-kekulenoidna. Pokazano je
da je kekulenoidna transformacija narocito jednostavna za minimalno-kekulenoidne sluc¢ajeve. Takoder su izve-
dene granice za HOMO-LUMO razmak za aciklicke konjugirane poliene pomocu konjugiranih staza. Nekoliko
je primjera prikazano, a identificirane su i neke kemijske posljedice unakrizne konjugacije.
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