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A theorem is stated that enables the number of spanning trees in any finite connected graph to

be calculated from two determinants that are easily obtainable from its cycles � edges inci-

dence-matrix. The 1983 theorem of Gutman, Mallion and Essam (GME), applicable only to

planar graphs, arises as a special case of what we are calling the Cycle Theorem (CT). The de-

terminants encountered in CT are the same size as those arising in GME when planar graphs

are under consideration, but CT is applicable to non-planar graphs as well. CT thus extends the

conceptual and computational advantages of GME to graphs of any genus. This is especially of

value as toroidal polyhexes and other carbon-atom species embedded on the torus, as well as

on other non-planar surfaces, are presently of increasing interest. The Cycle Theorem is ap-

plied to certain classic, and other, graphs – planar and non-planar – including a typical toroidal

polyhex.
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INTRODUCTION

Counting the spanning trees (defined on p. 265, l. col.)

in an electrical network is an old problem that goes back

to the work of Kirchhoff,1 and its subsequent mathemati-

cal rationalisation,2 in the 19th century. The famous 'Ma-

trix Tree Theorem' 3–8 was much later formalised in the

context of abstract graphs.5–16 Such graphs may be con-

sidered,1,2,17–19 if desired, to depict (macroscopic) electri-

cal networks. Furthermore, in addition to being amena-

ble to many other interpretations, these abstract graphs

may also be thought of as representing the connectivity of

the atoms that comprise the (microscopic) conjugation

network of an unsaturated molecule (e.g., Ref. 20). Find-

ing the number of spanning trees in (i.e., the complexity

of) such (labelled) molecular graphs has been of some

considerable interest, both to the present authors and to

others,21–40 especially in the context of the fullere-

nes,23,26,29–32,34,36 for a number of which the exact values

of some truly vast complexities (with magnitudes of the

order of 1050) have been reported.36
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In 1983, Gutman, Essam and one of the present au-

thors proved a new theorem22 for counting the spanning

trees of – specifically – planar (labelled) molecular

graphs. (Because this theorem will frequently be refer-

red to in the rest of this paper we shall henceforth denote

it by the acronym 'GME'.) Application of this theorem

requires the evaluation of a determinant whose order is

equal to the number of rings of a given planar graph,

rather than requiring knowledge of the determinant5,8,21 or

eigenvalues5,21,41–43 of a matrix approximately of the or-

der of the number of vertices in that graph, as previous

theorems for spanning-tree counting had done. When

applied to molecular graphs, where the number of rings

is usually much smaller than the number of vertices, this

device22 accordingly gave rise to a considerable saving

of labour and/or computation: for example, the problem

of finding the complexity of the naphthalene molecular-

graph is reduced from either the evaluation of a deter-

minant5,8,21 of size (9 � 9) or calculating the eigenvalues

of a (10 � 10) matrix21 to the development of just a

(2 � 2) determinant – quite literally a 'back-of-an-enve-

lope' (or even merely a mental) calculation. Similarly,

the number of spanning trees in Buckminsterfullerene

could be computed from a (31 � 31) determinant,26 rather

than one of dimension (59 � 59) that an application of

the Matrix Tree Theorem5,8,21 would require; (and, more-

over, exploitation of an algorithmic version of GME,22

proposed by one of us and John,29 even further reduces

the question of Buckminsterfullerene's complexity to the

evaluation of an (11 � 11) determinant29). It has been

pointed out to us by a referee that the Matrix Tree Theo-

rem – based on the 'Laplacian'30,31 ('Kirchhoff ',25 'Admit-

tance'5) matrix, whether through its determinant (e.g.,

Ref. 25) or its eigenvalues (e.g., Refs. 30, 31) – can be

applied to edge-weighted graphs as well as to the graphs

with unit edge-weightings that are considered in this pa-

per. In the Appendix, we present a form of the main the-

orem of this paper (p. 267; Eq. 1) that is also applicable

to edge-weighted graphs.

The advantages offered by GME22 are, however,

available only for planar graphs.28 Until recently, almost

all the molecular graphs of physical and chemical inter-

est were planar – even the fullerenes which, being repre-

sented by graphs embedded on spherical or other surfaces

of genus 0, are, from a graph-theoretical point of view,

planar23,26 – and so this limitation of GME22 was, in

practice, no great privation. However, over the last decade

there has been increasing interest44–51 – including from the

present authors and our respective co-workers44–46,49–51

– in 3-valent networks embedded on surfaces other than

the sphere (e.g., the torus44); two extensive reviews49,50

cite relevant references. Molecular Möbius strips have also

been the subject of recent discussion.52–55 These and other

species can give rise to graphs not of genus 0, for which,

as already stated, GME22 is not relevant.28 Accordingly,

in this paper, we present a theorem by means of which

the complexity of a labelled graph – planar or non-pla-

nar – may be calculated from, in general, two determi-

nants. As is the case with an analogous determinant de-

scribed in GME,22 these are much smaller than the one

that would be encountered in an application of the tradi-

tional Matrix Tree Theorem,5,8,21 if the average vertex

degree is 3 or less: this is often the case in chemical ap-

plications. We further point out that, for any planar graph,

one of the two determinants in question can always con-

veniently be made to coincide with that arising in the

method proposed by GME.22 In this case, the absolute

value of the other determinant is always unity and we

also investigate other circumstances when this advanta-

geous situation arises. In this way, we emphasise how

GME22 is merely a special case, applicable when the la-

belled graph in question is planar, of the more general

theorem that we are about to state. Our theorem – which

we shall call the Cycle Theorem (CT) – thus has all the

conceptual and computational advantages that GME22

has when (appropriately) applied to planar molecular

graphs, but, unlike the latter theorem, the Cycle Theo-

rem also holds for non-planar graphs. A restricted, though

important, case of this Cycle Theorem was published by

Bryant17,19 and also by Bondy and Murty,56 the former

noting the type of failure that would occur if the restric-

tion were not observed. In this paper, we state the Cycle

Theorem, a general theorem that is free of restrictions,

so that it is fully available to the potential user. Repre-

sentative examples of its application appear later, and the

mathematical details are presented in the following sec-

tion. A generalisation of it to edge-weighted graphs is

presented in the Appendix.

MATHEMATICAL DETAILS

Preliminary Remarks

Because our primary aim in this paper is to illustrate the

application of CT for the benefit of potential chemical

users, its proof will merely be outlined here. We first de-

fine our notation.

Notation and Terminology
17,19,57,58

In this section, we define the following terms: circuit,

orientation, cycle, cycle space, spanning tree, cyclomatic

number (cycle rank), complexity, generic circuit (cycle),

simple generic circuit (cycle), 'winding' generic circuit

(cycle), patch, patch circuit (cycle), and generic embed-

ding.

Circuits and Cycles. – In this treatment, we consider

graphs G, with v vertices and e edges, that are finite,

connected and 'oriented'. 'Oriented' means that, in an ar-

bitrary manner, each edge is assigned a direction. This is

needed for the manipulation of incidences but the term
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'oriented' does not imply that the graph is essentially 'di-

rected'. Multiple edges between pairs of vertices, as well

as self-loops at individual vertices, are admitted, if pres-

ent; (such structures are sometimes called 'pseudo-graphs'

or 'general graphs', but we shall continue to refer to them

just as 'graphs'). A circuit is primarily defined to be a

connected sub-graph having precisely two distinct edges

incident with each of its vertices.59 An orientation of the

circuit may be assigned to it, and the combination of a

circuit and its orientation we shall call a cycle. We also

consider self-loops to be circuits. The orientations of a

self-loop at a vertex A, as an edge and as a cycle, can be

assigned by introducing two points (not vertices) on the

loop, say X and Y, and distinguishing the sense AXYA

from the sense AYXA, if desired. Cycles in the oriented

graphs that we treat here are not restricted to following

the orientation of the edges, as they would be in directed

graphs; rather, as we shall see, agreement or disagree-

ment of the senses of the oriented edges and any given

(oriented) cycle containing (all or some of) them will be

used to define a positive or negative incidence (respec-

tively) between the edges and the cycle. A cycle may be

defined algebraically by a (1 � e) cycle � edges matrix

(an incidence row-vector). The totality of cycles capable

of being so defined, for a given graph, spans a vector

space (over the real numbers) called its cycle space. We

shall (though not often) extend our use of the word 'cy-

cle' (suitably qualified if clarity requires it) beyond its

primary sense to elements of this space, as discussed

further in this section. The 'orientation' of such an ele-

ment may no longer be assignable visually: it will sim-

ply be inherent in the defining row-vector.

Spanning Trees, Cyclomatic Number (Circuit Rank) and

Complexity. – A connected graph that contains no cir-

cuits is called a tree. If a connected graph contains one

or more circuits we may select one and delete one of its

edges. If the resulting graph is not a tree, we repeat the

process till it is. The graph remaining connects all verti-

ces of G; it is called a spanning tree of G. The number of

edges removed in this process is the same however the

process is carried out and is called the cyclomatic num-

ber (or circuit rank), �, of G, and,

� = e – v + 1.

The number of spanning trees of G is called the

complexity of G and is denoted by the symbol t(G).

Generic Circuits (Cycles) and Patches. – The circuits

(cycles), in the primary sense, of a graph embedded on a

surface (without edges crossing) may be distinguished as

follows:

(a) Generic Circuit (Cycle). A closed curve initially co-

inciding with such a circuit (cycle) cannot be shrunk

continuously to a point while remaining on the sur-

face. The circuit (cycle) is called generic, as its

existence depends on the genus of the surface. For

example, a generic circuit (cycle) of a graph embed-

ded on a torus might go just once 'through the hole',

or just once 'round the hole', or, if more often, round

both simultaneously, referred to as 'winding'. A ge-

neric circuit (cycle) is simple if there is no winding.

This is amplified later (p. 270, l. col.).

(b) Patch, Patch Circuit (Cycle). A circuit (cycle) may be

such that a closed curve initially coinciding with it

can be shrunk continuously to a point whilst remain-

ing on the surface. If, during such a contraction, no

edges or vertices of the graph need be crossed we call

the traversed portion of the embedding surface a

patch. Conversely, we may imagine that a drop of ink

is placed on the surface (not on an edge or at a vertex)

and allowed to spread as much as possible without

crossing an edge or vertex. The portion of the surface

so covered will also be called a patch, even though

the edges that separate this portion of the surface

from the rest may not form a circuit (cycle) in the pri-

mary sense. We may use the expression 'patch circuit

(cycle)' in such a case. A patch circuit (cycle) need

not be connected, but it is always a member of the

cycle space. Figure 1 illustrates examples of patches

(embedded on a plane); they are shown shaded and the

respective patch circuits are shown bold.

The patch circuit in Figure 1(a) might be referred to

simply as a 'circuit', but not that in Figure 1(b). Note that

a self-loop can, as in Figure 1(a), form part of a patch cir-

cuit (cycle). A self-loop can also form a patch circuit (cy-

cle) on its own, as that in Figure 1(a) would do for the un-

shaded part of that diagram.

Generic Embedding. – It is possible to embed a graph on

a surface of higher genus in a way that is not to our pur-

pose: for example, a planar graph can be embedded on a

'small' part of the surface of a torus, i.e., one that is in-

distinguishable topologically from a part of a plane. We

shall consider only embeddings that we call generic,

meaning that at least one simple generic cycle of each

'kind' (p. 270, l. col.) (pertaining to the genus of the sur-

face) is present.
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Figure 1. Examples of patch circuits that are not circuits in the pri-
mary sense.



The Theorem of Gutman, Mallion and

Essam ('GME')
22,23,28

This theorem, which applies only to planar graphs,28 is a

special case of the main theorem of this paper and is, in

a sense, the motivation for it. Let G be a connected graph

embedded on a plane and let G+ be the complete ('geo-

metric') dual15,22,23 of G. Now delete the infinite-face

vertex15,22,23 of G+ and all the edges incident upon it.

The resulting graph, G*, is called the inner dual of G. By

Euler's formula, the number of faces of G is (e – v + 2);

the number of vertices of G* is thus (e – v + 1) = �.

We now define three (�� �) matrices, A*, B* and G:

A* has elements a*ij defined by:

a*ij = �,

where � is the number of edges joining vertex i of G* to

vertex j of G* (i � j);

a*ii = 0,

for all i, j in the range i, j = 1,2,...,�.

B* is a diagonal matrix that has elements b*ij defined

by:

b*ii = bi,

where bi is the number of edges in the patch-cycle of the

patch of G that surrounds the ith vertex of G*;

b*ij = 0, if i � j,

for all i, j in the range i, j = 1,2,...,�.

G is defined as

G = B* – A* .

The Theorem of Gutman, Mallion and Essam (GME)22 then

states, simply, that

t(G) = det G .

It might be helpful to describe a method of con-

structing the inner dual, illustrating it by means of the

example shown in Figure 2. Place a point inside each of

the patches of G (their circuits are also known to Chem-

ists as rings); this set of points will constitute the verti-

ces of G*, of which there will be �. Now join by edges

all pairs, i and j, of these vertices if and only if the

patches of G within which lie the vertices i and j of the

inner dual are adjacent in G – that is, if their patch cir-

cuits have an edge (and not merely a single vertex) in

common in G. Furthermore, such an edge is drawn be-

tween vertices i and j for every shared edge. Finally, the

vertices of G* are then conveniently – though arbitrarily

– labelled (see Figure 2(b)). The process just described is

shown in Figure 2. From these, the matrix G can readily

be compiled, resulting in the one shown below.

G =

5 1 0 1 0

1 4 1 1 0

0 1 3 0 0

1 1 0 2 0

0 0 0 0 1

� �

� � �

�

� �

�

�

�
�
�
�
�
�

�

	














As det G = 72, by GME,22 t(G) = 72.

GME22 applies only to planar graphs,28 which have

been envisaged as embedded on a plane. A graph embed-

ded on a sphere23,26 or cylinder is also planar and, on a

sphere, we need only designate any patch as the 'infinite'

region and proceed as described; (see, for example, Ref.

26). For a graph embedded on a cylinder, we can 'cap' the

open ends to obtain what is (topologically) a sphere.

Definition of Three Matrices, Z, U and M,

Required for the Cycle Theorem

The Matrix Z. – As already stated, a cycle in the primary

sense may be described by a (1 � e) row-vector that cha-

racterises its incidences upon the edges by the elements

1, –1, 0; and, for a given connected graph G, the totality

of such vectors, i.e., for all cycles in the graph, spans a

vector space (over the real numbers) of dimension �.17,19

Any � linearly independent members of this space form

a basis for it. Having chosen such a basis we define Z to

be the (�� e) matrix whose ith row (1 � i � �) is formed

by the ith member of the basis and whose jth column (1 �
j � e) corresponds to the edge labelled j. Z is thus a cy-

cles � edges incidence-matrix. The cycles are not neces-

sarily of the primary kind, though in practice we would

usually expect them to be so.

The Matrix U. – It may be shown17,19 that a (�� �)

sub-matrix of Z is non-singular if and only if the e – � (=

v – 1) edges that do not correspond to its columns form a

spanning tree of G. (The ones that correspond to its col-

umns are said to form a set of chords.) There is a (1-to-1)

correspondence between spanning trees and these (�� �)

non-singular matrices. Furthermore, the absolute value

of the determinant of such a matrix is the same for all of
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Figure 2. (a) A graph, G. (b) The process of formation of the in-
ner dual.22,23 (c) The (labelled) inner dual22.23 of G.



them (for a given graph and choice of cycles).17,19 A ma-

trix of this kind, when selected, will be denoted by U.

The Matrix M. – This is defined by

M = ZZT

where ZT is the transpose of Z. It is well known from the

Binet-Cauchy Theorem (e.g., Refs. 60 and 61) that for

any matrix A with n rows and m columns (m � n)

det AAT = � D2

where the sum is taken over all (n � n) determinants D

that can be formed from the m columns of A (preserving

their order but not necessarily their adjacency).

A Theorem on Counting Spanning Trees

The Cycle Theorem (CT). – We now state the main theo-

rem of this paper: from the definitions and properties of

Z, M and U, and from the remark on det AAT just made,

it is an immediate deduction that

t(G) =
det

(det )

M

U
2

. (1)

The remainder of our paper is devoted to discussion of

this result and its applications. Because the theorem em-

bodied in Eq. (1) will frequently be mentioned, we shall

henceforth call it the 'Cycle Theorem' and refer to it by

the acronym 'CT'.

Circumstances when 
det U
 is Guaranteed to be 1. – It is

of interest whether the value of 
det U
 can be predicted

– for certain classes of graphs and choices of cycles, at

least – both for computational advantage and, perhaps,

for some insight into structure. We now identify two

cases where 
det U
 = 1.

(a) Any Graph: Fundamental Set of Cycles. The process

described earlier (p. 265, l. col.) for picking out a

spanning tree of a graph G can be reversed. We as-

sign directions to the edges of G but we do not num-

ber them, nor the circuits, as yet. We now pick out

any spanning tree of G; it will consist of v – 1 (= e –

�) edges. Add to these one of the � remaining edges

to create a circuit. Assign it a sense, and label both

the edge and the cycle '1'. Delete this edge and repeat

the procedure with another edge, labelling it and the

new cycle '2'. Continue in this way till all �edges that

were not in the original spanning-tree have been dealt

with. Label the edges of the tree (�+ 1), (�+ 2),...,e.

If now a matrix Z' is compiled having for its i
th

row

(1 � i � �) the cycle � edges incidence row-vector

for the i
th

cycle, it is clear that the (�� �) sub-matrix

with columns corresponding to edges 1,2,..., � is a

diagonal matrix; furthermore, each element on the

principal diagonal has absolute value 1.

The rows of Z' are therefore linearly independent and

Z' is a Z-matrix for G. A set of cycles whose inci-

dence row-vectors form a basis for the associated

vector-space is called a fundamental set of cycles.

The diagonal matrix just identified is a U-matrix and,

obviously, 
det U
 = 1. We can thus say that 
det U
 = 1

is possible for any graph if a fundamental set of cy-

cles is employed; (see also Refs. 17 and 19). How-

ever, other procedures that do not use fundamental

cycles may have advantages of their own: for exam-

ple, the cycles may be associated with the patches

and so be more obvious to the eye. Although a partic-

ular way of labelling the graphs has been employed

in these arguments, the use of any other labelling

scheme would merely permute the rows and/or the

columns of the matrices concerned and the value of


det U
 would thus be unaffected.

(b) Any Planar Graph: Patch Cycles. By Euler's Theo-

rem, any finite, connected planar graph embedded on

a plane will contain (e – v + 2) regions, including the

'infinite' region surrounding the graph. Disregarding

this region, we have (e – v + 1) = � finite regions

which we may now identify 'by eye' as patches delin-

eated by circuits. We do not consider the graph as la-

belled or oriented at this stage. Select a circuit that

has an edge in common with the infinite region and

label the edge and the circuit '1'. Delete this edge,

thus allowing the 'infinite' region to be extended

deeper into the graph, and repeat the process with

edge '2' and circuit '2'. Continue in this way till no

circuits remain and � edges and � circuits have been

labelled. Label the remaining edges (� + 1), (� +

2),...,e, and orient the graph. If now a matrix Z' is

compiled having for its i
th

row (1 � i � �) the cycle �
edges incidence row-vector for the i

th
cycle, it is clear

that the (�� �) sub-matrix with columns correspond-

ing to edges 1,2,...,� is an upper-triangular matrix

(i.e., one with only zero elements below the principal

diagonal); furthermore, the absolute value of any ele-

ment on the principal diagonal is 1. The rows of Z'
are therefore linearly independent, Z' is a Z-matrix

for the graph, and the vectors representing the cycles

form a basis for the associated vector-space. The up-

per-triangular matrix just identified is a U-matrix

and, clearly, 
det U
 = 1.

The Matrix M as a 'Cycle-Overlap Matrix'

One of the attractive features of GME22 is that the data

needed for its implementation can be 'seen' in the drawn

(embedded) graph. In particular, the matrix M = ZZT can

be compiled, without first compiling Z, by inspecting

the cycles of the graph that form a basis and the edges

common to pairs of such cycles.

We shall see later that the cycles of a basis can simi-

larly be read off graphs embedded on surfaces such as

the torus, the Möbius band, etc. These cycles are, in gen-

eral, patch cycles or cycles in the primary sense.

When two cycles of a graph G have an edge in com-

mon and at that edge their orientations agree, we say that
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there is a 'match'; if they disagree, a 'mismatch'. Having

identified � cycles of G that form a basis, we can com-

pile the (symmetrical) matrix M directly from the fol-

lowing definitions of its elements, mij (1� i, j � �):

mii = number of edges in cycle i

mij = �(number of matches) – (number of mismatches)�,

in cycles i and j.

From this point of view, M is called a 'cycle-overlap

matrix'.

The Theorem of Gutman, Mallion and Essam ('GME')

as a Special Case of the Cycle Theorem ('CT')

When a connected graph G is embedded on a plane, we

may, as just shown, form its Z-matrix from its patch cy-

cles. In this section we consider only those graphs in

which the orientations of these cycles can be assigned

visually. (This is tantamount to excluding certain graphs

with 'isthmus' edges within a patch – a restriction that

can easily be obviated by 'contracting' such edges).57(b)

We assign the same orientation (clockwise or anti-clock-

wise) to all the cycles. The direction of any edge that be-

longs to two cycles will, in consequence of this assign-

ment, agree with the orientation of one cycle and dis-

agree with the orientation of the other. If, now, the

matrix M is compiled for G, whether as ZZT or by the

cycle-overlap method just described in the previous sub-

section, it follows from the above that it will coincide

(with suitable labelling) with the matrix G, defined in

connection with GME. Also, as shown, for such a matrix

Z, 
det U
 = 1. The result

t(G) = det G, (2)

i.e., the theorem of Gutman et al.,22,23 can therefore be

classified as a special case of CT (p. 267, Eq. 1), i.e., of

t(G) =
det

(det )

M

U
2

. (1)

Illustration of the Cycle Theorem (CT – Eq. 1)

by Its Application to the (Planar) Tetrahedral

Graph, the Complete Graph K4

Representation of K4 and Its Cycles. – The complete

graph K4, with its edges arbitrarily labelled and oriented,

is depicted in Figure 3(a). Sets of its cycles have been

assigned orientations, as in Figures 3(b), (c) and (d). In

what follows, whenever independent cycles are listed,

the labellings of edges whose orientations are in the

same sense as that in which the cycle is traversed are

printed in upright (Roman) type: those whose orienta-

tions are against the cycle's sense are rendered in italic

type: this convention will apply throughout all our ex-

amples of CT's application.

Independent Cycles. – A set of three independent cycles

is shown in Figure 3(b). They have been deliberately

chosen so as not to be covered by the more obvious

cases discussed earlier (p. 267). They are listed below,

each as a sequence of edges:

Edges

Cycle 1 2 3 5 6

Cycle 2 1 6 4 3

Cycle 3 1 2 4 5

The matrices Z and M are

Z =

0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

�

�

�

�

�

�
�
�

�

	








,

M = ZZT =

4 0 0

0 4 0

0 0 4

�

�

�
�
�

�

	








.

We may choose U =

0 1 1

1 0 1

1 1 0

�

�

�
�
�

�

	








, then det U = 2 and,

from CT (Eq. 1),
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Figure 3. (a) The tetrahedral graph, the complete graph K4 with
edges arbitrarily labelled and oriented. (b) K4 showing a set of in-
dependent cycles suitable for an application of the Cycle Theorem
(Eq. (1), p. 267). (c) Likewise, showing a fundamental set of cycles
suitable for an application of CT, using the ideas of paragraph
(a), p. 267. (d) Likewise, showing a set of independent cycles suit-
able for an application of CT, using the ideas of paragraph (b),
p. 267.



s

t(G) =
det

(det )

M

U
2

=
4

2

3

2
= 16.

This is in accord with the well-known Sylvester-Bor-

chardt-Cayley formula,3,4,62

t(Kn) = nn–2, when n = 4.

Fundamental Set of Cycles. – A fundamental set of cy-

cles, derived from the spanning tree with edges 2, 4 and

6, with arbitrarily assigned orientations, is shown in Fig-

ure 3(c) and listed below by sequences of edges:

Edges

Cycle 1 4 5 6

Cycle 2 2 4 3

Cycle 3 1 6 2

The matrices Z and M are

Z =

0 0 0 1 1 1

0 1 1 1 0 0

1 1 0 0 0 1

�

�

�

�

�
�
�

�

	








,

M = ZZT =

3 1 1

1 3 1

1 1 3

�

�

�

�

�
�
�

�

	








.

We already know that 
det U
 = 1. Therefore,

t(G) = det M = 16,

confirming the previously calculated complexity of K4.

Patch Cycles. – The three independent cycles shown in

Figure 3(d) are patch cycles. They also, inevitably, form

a fundamental set of cycles, derived from the spanning

tree with edges 1, 2, 3; but we shall not use that fact.

They are listed below, each as a sequence of edges.

Edges

Cycle 1 2 4 3

Cycle 2 1 6 2

Cycle 3 1 3 5

The matrices Z and M for this application are then

Z =

0 1 1 1 0 0

1 1 0 0 0 1

1 0 1 0 1 0

�

�

�

�

�

�
�
�

�

	








,

M = ZZT =

3 1 1

1 3 1

1 1 3

� �

� �

� �

�

�

�
�
�

�

	








.

Once more, we already know that 
det U
 = 1 and there-

fore

t(G) = det M = 16, as before.

Relation to GME. – The matrix M in the immediately

preceding section can also be interpreted as the result of

applying GME.22 Figures 4(a) and (b) show the forma-

tion of the inner dual of K4.

Graphs Embedded on Surfaces other than

the Plane

Some Examples. – One of the objectives of the present

paper is to extend a helpful feature of GME22 – namely,

the compilation of the M-matrix for a graph 'by eye' – to

non-planar graphs (to which GME itself cannot be ap-

plied). For this we need to embed the graph on a suitable

surface and then to represent this embedding on a plane

(i.e., the page). We shall consider three surfaces: (a) the

torus, (b) the Möbius band, and (c) the Klein bottle.

The diagrams of Figure 5 show how these surfaces

are represented in a plane by means of rectangles with

variously 'identified' pairs of opposite sides, i.e., sides

that contain the same points on the actual surface. The

points may appear in the same order in each representa-

tion ('identified'), or in opposite orders ('counter-identi-

fied'). If, for example, the opposite sides of the rectangle

representing the torus were matched up and stuck to-
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Figure 4. (a) The process of formation of the inner dual when cal-
culating the number of spanning trees in K4 by GME.22,23 (b) The
(labelled) inner dual22,23 of K4.
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Figure 5. Non-planar surfaces represented in a plane: (a) torus;
(b) Möbius band; (c) Klein bottle.



gether (in the appropriate sequence and spatial embed-

ding), the torus itself would be recovered; a twist would

be needed to reconstruct the Möbius band, the 'unidenti-

fied' pair of sides then forming the single edge of the band.

There are results for graphs embedded generically on

these surfaces that correspond to Euler's Theorem (f – e +

v = 2) for the plane. Taking f to be the number of patches,

we have, for the torus and the Klein bottle, f – e + v = 0;

for the Möbius band, f – e + v = 1. However, for the torus,

only (f – 1) of the f patch cycles are independent: any

one of the cycle � edges incidence row-vectors can be

expressed as a linear combination of the others.

Observation on 'Kinds' of Generic Cycles. – In these dia-

grams (see footnote),* a generic cycle will appear as one

whose edges contain at least one pair of 'identified'

points, such as L and L or X and X. The pair of sides of

the rectangle in which such a pair appears determines

the 'kind' of the generic cycle. A generic cycle can thus

be of one or other or both kinds on a torus or a Klein

bottle, but of one kind only on a Möbius band. A generic

cycle that contains just one pair of identified points is

called 'simple'.

SOME FURTHER APPLICATIONS

Preliminaries

In the preceding section we applied the Cycle Theorem

to the tetrahedral graph, K4, for purposes of familiarisa-

tion. In this section, we apply it to some classic planar

and non-planar graphs and also to certain non-planar ones

which – more relevantly for contemporary interests44–51

– are embedded on the surface of a torus. All except one

(the K5 graph) are 3-valent graphs: this happens to bring

out the advantages of the present approach, in regard to

size of determinants, referred to in the Introduction. We

illustrate the cube because it can be embedded on a plane

as an array of patches (the usual geometric realisation of

this graph – see Figure 6) or generically on a torus as the

small toroidal polyhex44 TPH(2-1-2) (Figure 7). As will be

seen, applying CT to either realisation yields, as it should,

the same result. K5 and K3,3 are included because they

are the smallest non-planar graphs, and the presence, in a

given graph, of a sub-graph that contains either of these

(possibly as a contraction)57(b) is the necessary and suffi-

cient condition for the graph in question to be non-pla-

nar (Kuratowski's Theorem57(b),58(c)). The Petersen graph

and a larger polyhex44 are also considered.

The Cube Embedded on a Plane

This is shown in Figure 6, with its edges and the se-

lected cycle-set both arbitrarily labelled and oriented.

The cycles are listed below, each as a sequence of edges.

Edges

Cycle 1 1 5 10 6

Cycle 2 2 6 11 7

Cycle 3 3 7 12 8

Cycle 4 4 8 9 5

Cycle 5 9 12 11 10

We show the relevant Z-matrix, though M can easily

be compiled directly by the 'cycle-overlap' process al-

ready described (p. 267, r. col.):

Z =

� � � �

�

�

�

1 0 0 0 1 1 0 0 0 1 0 0

0 1 0 0 0 1 1 0 0 0 1 0

0 0 1 0 0 0 1 1 0 0 0 1

0 0 0 1 1 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1

�

�

�

�

�
�
�
�
�
�

�

	














,

M = ZZT =

4 1 0 1 1

1 4 1 0 1

0 1 4 1 1

1 0 1 4 1

1 1 1 1 4

� � �

� � �

� � �

� � �

� � � �

�

�

�
�
�
�
�
�

�

	














.

We already know that the value of 
det U
 is bound to

be 1. It will be found that det M = 384 and hence, by

CT, t(G) = 384.
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* Advice on displaying graphs in this manner: No generality is lost, and potential cavilling is forestalled, if edges or parts of

edges of the graph, or its vertices, are not unnecessarily placed on the identified (counter-identified) sides and especially not at the

corners A. By 'unnecessarily' we mean that this undesirable situation can be pre-empted by a slight displacement of the part con-

cerned. Throughout what follows we shall assume that this has been done.
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Figure 6. The cube, embedded on a plane, (a) with its vertices la-
belled, and (b) with labelled and oriented edges and a set of la-
belled and oriented cycles, suitable for the application of CT.



The Cube Generically Embedded on a Torus as

a Boundless Polyhex of Four Hexagons

An appropriate graph (with suitably labelled and oriented

edges and cycles) is shown in Figure 7. The torus is rep-

resented by the rectangle whose opposite sides are identi-

fied (p. 269, r. col.). The generic cycles are cycles 4 and 5

in the table of cycles shown below. The hexagons on the

torus can, for convenience, be repeated on the plane in a

biperiodic pattern in which all those labelled by the same

cycle-number (Figure 7(b)) represent the same hexagon

(Figure 7(a)). Hexagons and cycles with partly dotted out-

lines (Figure 7) represent the periodic re-appearance of

such hexagons and cycles in the diagram. Note that, for

the sake of clarity in this diagram and in others represent-

ing toroidal polyhexes, we have adopted a more 'chemi-

cal' convention: a vertex is assumed wherever two or more

edges meet, but a vertex is not explicitly marked there.

In the subsequent section we discuss how to select

sets of cycles in non-planar embeddings that can be used

for our calculations. Briefly, we need all but one of the

hexagonal patch-cycles and two other (simple generic)

cycles independently encircling the torus. In the present

example, patch cycles 1,2,3 have been taken, together

with two generic cycles, 4 and 5. These cycles are shown

in Figure 7(b); as before, each row in the table below is a

list of edges in the cycles selected, in the order traversed.

Edges

Cycle 1 2 3 4 5 10 6

Cycle 2 3 7 11 10 9 8

Cycle 3 1 6 11 12 9 5

Cycle 4 1 2 3 4

Cycle 5 4 8 9 5

Z =

0 1 1 1 1 1 0 0 0 1 0 0

0 0 1 0 0 0 1 1 1 1 1 0

1 0 0 0 1 1 0 0 1 0 1 1

1 1 1

� � � � � �

�

� �

� � �

� �

�

�

�
�
�
�
�
�

�

	














1 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 1 1 0 0 0

,

M = ZZT =

6 2 2 3 2

2 6 2 1 2

2 2 6 1 2

3 1 1 4 1

2 2 2 1 4

� � �

� � � �

� �

� �

� � �

�

�

�
�
�
�
�
�

�

	














.

We may choose U =

0 1 1 1 1

0 0 1 0 1

1 0 0 0 0

1 1 1 1 0

0 0 0 1 0

� � � �

� � �

�

�

�
�
�
�
�
�

�

	














.

It will be found that det M = 384, det U = 1. Hence,

from CT (Eq. 1), it is again seen that t(G) = 384/(12) =

384. Whether it could actually have been foreseen that


det U
 = 1 will be discussed later.

The Complete Graph K5

This is illustrated in Figure 8. Cycles of a fundamental

set (derived from the spanning tree with edges 1,6,10,5)

are listed below, each as a sequence of labelled edges.

Edges

Cycle 1 1 2 6

Cycle 2 1 9 10

Cycle 3 1 8 5

Cycle 4 6 3 10

Cycle 5 6 7 5

Cycle 6 10 4 5

Z =

1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 1 1

1 0 0 0 1 0 0 1 0 0

0 0 1 0 0 1 0 0 0 1

0 0 0 0

�

�

�

� �

�1 1 1 0 0 0

0 0 0 1 1 0 0 0 0 1� �

�

�

�
�
�
�
�
�
��

�

	

















;
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Figure 7. The cube graph, embedded on a torus, (a) with its verti-
ces labelled, and (b) with labelled and oriented edges and a set
of labelled and oriented cycles, suitable for the application of CT.
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Figure 8. The complete graph K5, with its edges labelled and ori-
ented. For clarity, the cycles are now listed in the text, rather than
shown in the diagram.



M = ZZT =

3 1 1 1 1 0

1 3 1 1 0 1

1 1 3 0 1 1

1 1 0 3 1 1

1 0 1 1 3 1

0 1 1 1 1 3

� �

�

� �

�

� �

�

�

�
�
�
�
�
�
��

�

	

















.

A calculation shows that det M = 125, and we know that


det U� must equal 1, because the cycles form a funda-

mental set. Hence, from CT, it is seen that t(G) = 125.

This is in accord with the Sylvester-Borchardt-Cayley

formula,3,4,62 t(Kn) = nn–2, applied with n = 5.

The Complete Bipartite Graph K3,3 (the 'Utilities

Graph') in its Usual Representation

This classic graph, with its arbitrarily labelled and ori-

ented edges, is shown in Figure 9. The cycles used are

listed below, each as a sequence of edges. We have de-

liberately avoided choosing a fundamental set.

Edges

Cycle 1 1 4 5 2

Cycle 2 1 7 9 3

Cycle 3 2 5 6 3

Cycle 4 4 7 8 5

Z =

1 1 0 1 1 0 0 0 0

1 0 1 0 0 0 1 0 1

0 1 1 0 1 1 0 0 0

0 0 0 1 1 0 1 1 0

� �

� �

� �

� �

�

�

�
�
�
��

�

	











;

M = ZZT =

4 1 2 2

1 4 1 1

2 1 4 1

2 1 1 4

� �

�

�

�

�

�
�
�
��

�

	











;

we may choose

U =

� �

�

� �

�

�

�

�
�
�
��

�

	











1 0 1 1

0 1 0 0

1 1 0 1

0 0 1 1

.

Development of the above determinants yields det M =

81 and det U = 1. Hence, from CT, we calculate that t(G)

= 81/(1)2 = 81.

The Graph K3,3 Embedded on a Torus as a

Three-Hexagon Polyhex

K3,3 is again depicted in Figure 10. It is shown as the to-

roidal polyhex TPH(3-2-1),44 with three hexagons. The

embedding is of necessity generic, as K3,3 is of genus 1.

For convenience of drawing, the 'rectangle' representing

the torus has been shown as a parallelogram. As with the

previous examples, a list is given below of the cycles

used, chosen as already described (p. 271, l. col.). Cycles

3 and 4 are the generic ones.

Edges

Cycle 1 2 3 6 4 7 8

Cycle 2 1 2 5 6 9 7

Cycle 3 1 7 8 5 6 3

Cycle 4 1 7 8 2

Z =

0 1 1 1 0 1 1 1 0

1 1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1 0

1 1 0 0 0 0 1 1 0

� � �

� � �

� � �

� �

�

�

�
�
�
��

�

	











,

M = ZZT =

6 3 0 3

3 6 0 3

0 0 6 3

3 3 3 4

�

� �

�

�

�

�
�
�
��

�

	











;

we may choose

U =

0 1 1 0

1 1 0 1

1 0 0 1

1 1 0 0

�

� �

�

�

�

�

�
�
�
��

�

	











.
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Figure 9. The complete bipartite graph K3,3 drawn in the form of
the 'utilities' graph, with vertices and edges labelled, and edge ori-
entations shown. For clarity, the cycles are listed in the text, rather
than shown in the diagram.
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Figure 10. The complete bipartite graph K3,3 embedded on a torus
as a three-hexagon polyhex,44 (a) with its vertices labelled, and (b)
with patch cycles and edges labelled, and their orientations shown.



We find that det M = 81 and det U = 1. Hence, from CT,

we calculate that t(G) = 81/(1)2 = 81, so verifying the re-

sult obtained above (p. 272), and, incidentally, also

nicely exemplifying the well-known result that5(b)

t(Kp,q) = pq–1 � qp–1,

with p = q = 3.

The reader will notice that, once again, 
det U
 = 1.

The Petersen Graph

This classic graph is shown in Figure 11, and the cycles

used, each as a sequence of edges, are listed below.

Edges

Cycle 1 1 5 4 3 2

Cycle 2 4 9 13 14 10

Cycle 3 2 7 14 15 8

Cycle 4 3 8 12 11 9

Cycle 5 4 9 11 6 5

Cycle 6 1 5 10 14 7

Z=

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1 1 0 0 1 1 0

0 1 0 0 0 0 1 1 0 0 0 0 0 1 1

� �

� � �

0 0 1 0 0 0 0 1 1 0 1 1 0 0 0

0 0 0 1 1 1 0 0 1 0 1 0 0 0 0

1 0 0 0 1 0 1 0 0 1 0 0 0 1 0

� �

�

�

�

�

�
�
�
�
�
�
�

�

	
















;

M = ZZT =

5 1 1 1 2 2

1 5 1 1 2 2

1 1 5 1 0 2

1 1 1 5 2 0

2 2 0 2 5 1

2 2 2 0 1 5

� �

� �

� � �

�

� �

�

�

�
�
�
�
�
�
��

�

	

















.

We may choose

U =

1 1 1 1 1 0

0 0 0 0 1 0

0 1 0 0 0 1

0 0 1 0 0 0

0 0 0 1 1 0

1 0 0 1 0 0

�

�

�

�
�
�
�
�
�
��

�

	

















.

It will be found that det M = 2000 and det U = 1 so that,

once again, 
det U� = 1. It is thus evident, from CT, that

t(G) = 2000/(1)2 = 2000. This is in agreement with the

literature value58(c),63 and also with the complexity ob-

tained via the simply calculated34 characteristic polyno-

mial, viz.

t(G) =
( )( ) ( )

( )

x x x

x
x

� � �
�

�

3 1 2

10 3

5 4

3

.

The Graph TPH(10-3-1)
44

This large polyhex graph, which has 20 vertices, 30 edges

and 10 patches, of which any nine patches are independ-

ent (see p. 269, r. col., p. 270, l. col.), is depicted in Fig-

ure 12, generically embedded on a torus (which appears

as a parallelogram). It has been chosen in order to show

how the treatment that we are presenting in this paper

may be applied to larger molecules of this kind. The

cyclomatic number for this graph is given by

� = e – v + 1 = f + 1,

as the graph is embedded on a torus. So, �= 11. The requi-

site number of cycles can therefore be supplied by two

simple generic cycles, one of each kind, and nine inde-

pendent patch cycles. We have chosen the nine patch

cycles (hexagons) that are shown numbered in Figure

12; and the generic cycles are, in terms of their edges,
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Figure 11. The Petersen graph with edges labelled and edge ori-
entations shown. For clarity, the cycles are listed in the text, rather
than shown in the diagram.
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Figure 12. A larger toroidal polyhex, TPH(10-3-1),44 with its patch cycles and edges labelled, and their orientations shown. (See Ref. 44 for details.)



Cycle 10: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18 19 20

Cycle 11: 1 2 3 4 5 21.

The (11 � 30) matrix Z need not be formed because

M (of dimension (11 � 11)) can be compiled 'by eye' us-

ing the cycle-overlap method (p. 267, r. col., p. 268, l.

col.). It turns out to be

M =

6 1 1 1 0 0 0 1 1 0 3

1 6 1 1 1 0 0 0 1 0 2

1 1 6 1 1 1 0 0 0 0

� � � � � �

� � � � � �

� � � � � �1

1 1 1 6 1 1 1 0 0 0 0

0 1 1 1 6 1 1 1 0 0 0

0 0 1 1 1 6 1 1 1

� � � � � �

� � � � � �

� � � � � � 0 0

0 0 0 1 1 1 6 1 1 0 0

1 0 0 0 1 1 1 6 1 0 1

1 1 0 0 0 1 1 1 6 0 2

� � � � �

� � � � �

� � � � �

0 0 0 0 0 0 0 0 0 20 5

3 2 1 0 0 0 0 1 2 5 6� � �

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

	
































The reader may by now be inclined to anticipate that,

with the method of cycle selection employed, (det U)2 =

1. This is, indeed, so. It is found by calculation that det

M = 6105660. Hence, we conclude from CT that t(G) =

6105660/(12) = 6105660. We have verified this result by

a direct application of the Matrix Tree Theorem,3–8 and

by the method of characteristic polynomials.22,34

SOME GRAPHS EMBEDDED ON
NON-PLANAR SURFACES

Preliminaries

General Remarks. – In this section, we intend to support

by means of examples the contention that it is possible

to obtain for graphs embedded on non-planar surfaces

the advantages discussed for planar graphs. These are (i)

that the relevant cycles can easily be chosen 'by eye',

and (ii) that they can be chosen so that 
det U
 = 1. The

reader will have noticed that, except for the deliberately

outré choice of cycles relating to K4 (Figure 3(b)), 
det

U
 has had the value 1 in all instances.

To achieve this, having embedded the graph generi-

cally on the chosen surface (p. 265), we select for our

basis, first, simple generic cycles, one of each kind (p.

270, l. col.). Second, we make up the �cycles, needed to

form the basis, from patch cycles (p. 265, paragraph (b))

visible in the embedded graph.

The Complete Graph K4 Embedded on a Torus. – We be-

gin by analysing a case when 
det U
 � 1, namely the com-

plete graph K4 embedded on a torus (Figure 13). The

edges and cycles are oriented and labelled as in Figure

3(a) and (b). In Figure 13, cycle 3 is a patch cycle, but

the two cycles 1 (edges 3,5,6,2) and 2 (edges 6,4,3,1),

although generic, are not simple cycles (p. 270, l. col.).

As already shown (p. 268, r. col.), with this choice of cy-

cles, 
det U
 = 2.

The Complete Bipartite Graph K3,3 Embedded on a Mö-

bius Band. – We now consider the graph (Figure 14),

which is labelled and oriented as in Figures 9 and 10.

For a Möbius band, the number of patches is equal to (e –

v + 1), i.e., is equal to �. However, following our rule,

we first choose a simple generic cycle, 1 (edges 4, 5, 2,

1), and discard one of the possible patch cycles. The

analysis now proceeds as described on p. 272 (l. col.),

but the cycles are 'visible'. We may recall here that K3,3

is also treated as a graph embedded on a torus (p. 272,

r. col.). For a torus, the number of patches is (e – v), i.e.,

(�– 1). However, only (e – v – 1) (= (�– 2)) of them are

independent. We would therefore choose two simple

generic cycles and discard one patch. The reader can

check that this has actually been carried out (p. 272,

r. col., p. 273, l. col.).

The Petersen Graph Embedded on a Klein Bottle. –

Finally, we consider the graph (Figure 15), which is

labelled and oriented as in Figure 11. On a Klein bottle,

the number of patches equals (e – v) (= (� – 1)) and they
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are all independent. However, we shall select two simple

generic cycles and discard one of the potential patches.

The generic cycles chosen are 5 (edges 6 5 4 9 11) and 6

(edges 10 14 7 1 5). The analysis now proceeds as de-

scribed (p. 273, l. col.) but the cycles are 'visible'. In

fact, M could easily have been compiled directly by the

'cycle-overlap' method.

Concerning the Value of 
det U


We have already seen that for graphs embedded on a

plane (or sphere or cylinder), the choice of patch cycles

for the application of CT will ensure automatically that


det U
 = 1, thus giving rise to the simplest form of the

Theorem. The examples of the preceding sub-section

make it plausible that, to ensure that 
det U
 = 1 even for

graphs embedded other than on a plane, it is sufficient

(though not necessary) to apply our rule for the choice

of cycles: namely, to choose one simple generic cycle of

each kind and sufficient patch cycles to make � cycles

altogether.

We outline a proof of this for a graph embedded on

a torus. By hypothesis, the graph contains two simple

generic circuits, one of each kind. Suppose, at first, that

they have only one vertex in common or that the edges

that they share form a path, i.e., that one is connected to

the next without a break. Cut the torus along the circuits

to obtain a piece of a plane bordered by the ('identified')

lines of the circuits. Within this border there will be (e –

v), i.e., (�– 1) patch circuits, of which any (�– 2) are in-

dependent. Select one patch, say P, and now carry out

the numbering process described (p. 267, paragraph (b)),

but with P playing the part of the 'infinite' region and no

edge belonging to the two generic circuits being chosen.

In this way, all (� – 2) circuits and their correlated edges

inside the border will have been numbered 1,2,...,(�– 2).

Now choose an edge from one of the two generic cir-

cuits that does not also belong to the other generic cir-

cuit and number it and the circuit (� – 1); choose an

edge of the other generic circuit and number it and the

circuit �. Label the remaining edges (� + 1),...,e and ori-

ent the graph. The proof concludes exactly as on p. 267,

paragraph (b).

If the two generic circuits have more than one ver-

tex in common and their common edges (if any) do not

form a single path, then one or more patch circuits will

be found 'trapped' between the generic circuits whenever

these separate at one vertex and rejoin at another. Were

the torus to be cut along the circuits it would divide into

two or more disconnected pieces of a plane. The argu-

ment used above then cannot proceed. Suppose, in such

a case, that the graph is labelled and oriented and that

one of the generic cycles is labelled 1 and the other 2,

the remaining chosen cycles being assigned numbers

3,..., �. Compile the matrix Z for the graph. Consider

also a second graph, identical with the first, but with ma-

trix Z' that differs from Z in row 2, i.e., with a different

second simple generic cycle, say 2'. Cycle 2' follows cy-

cle 2 in general, but whenever cycle 2 and cycle 1 sepa-

rate and then rejoin, cycle 2' follows cycle 1 (in such a

way that it remains simple). The matrix Z' thus de-

scribes the conditions envisaged in the first part of this

argument.

If ri (1 � i � �) is the ith row-vector in Z, and r is the

row-vector representing cycle 2', then

r =
i�

�

1

� ai ri

where a2 = 1 (and the values of the other ai are not need-

ed explicitly). Compile the matrix K = (kij) with kii = 1

(i � 2), k2j = aj and kij = 0 otherwise, (1 � i, j � �). Clearly,


det K
 = 1 = 
det K–1
 and KZ = Z', Z = K–1 Z'. We know

from the first part of this argument that 
det U
 = 1 for

every non-singular (�� �) matrix U' in Z' and, because

U = K–1 U', the same is true of any such matrix U in Z.
Similar arguments, showing that using our rule it is pos-

sible to ensure that 
det U
 = 1, may also be developed

for embeddings on the Möbius band, and on other sur-

faces. In case of doubt, 
det U
 can, of course, always be

evaluated.

CONCLUDING REMARKS

The practical reasons for the interest of one of the pres-

ent authors in spanning trees lay originally in the fact that

they arise in the course of calculating magnetic proper-

ties of conjugated systems.21,64–71 More recently, however,

spanning trees have found an application27 in chemical

nomenclature.72 It has been pointed out72 that any nota-

tion for a given molecule and its derivatives involves se-

lecting what is essentially a spanning tree for the mole-

cule in order to label its vertices and then to produce the

required linear notation.72 The complexity is, accord-

ingly, some measure of the ease of identification in the

context of such an indexing scheme.72,27 There are other
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notation studies where at least the concept of spanning

trees is relevant. For example, Randi} et al.73 devised

compact molecular codes for polycyclic systems, mak-

ing use of spanning sub-trees,73 and one of the present

authors74 recommended the use of a spanning tree (pref-

erably a single (Hamiltonian) path) or spaning forest, to

assist transcription of chemical graphs from a computer

keyboard. In passing, we note that the term 'complexity'

has been used with connotations other than simply

meaning 'the number of spanning trees of a graph' (e.g.,

Refs. 75 and 76) and one of the present authors has re-

cently commented63 on this matter, in collaboration with

Nenad Trinajsti}, the honorand of this Festschrift.

The complexity (in the well-defined and restricted

sense in which we have used this term in the present pa-

per) is an invariant of a chemical graph, under a re-label-

ling of its vertices, and hence is of potential interest as a

topological index, should it ever be found to bear any re-

lationship72 to physico-chemical properties or, conceivably,

to electrical conductance. We have not investigated these

areas here and, as far as we know, little such work has

been reported, although Fowler77 has recently investigated

the correlation of complexity with relative stability among

fullerene isomers.77 Our own immediate aim in this work

has, however, been two-fold: (i) to deepen our understand-

ing of structure (in terms of rings, patches, circuits and

cycles) within chemical applications, and (ii) to present

and illustrate the application of a useful theorem (the

Cycle Theorem, Eq. 1, p. 267) that matches the con-

venience of GME22 whilst also being applicable to non-

planar graphs. We note that, in our own field,44–46,49–51 and

that of others,52–55 the study of chemical species that can

be modelled by such graphs is increasingly becoming of

interest and of relevance. Finally, it will be noticed (p. 267,

r. col., p. 268, l. col.) that there is no need to assign

directions to edges, in an arbitrary and, therefore, non-

intrinsic manner, for the matrix M to be compiled by the

cycle-overlap process. The prospect of freeing the whole

of our argument from this arbitrary element is, therefore,

a challenge for the future.
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APPENDIX

The Cycle Theorem for Edge-Weighted Graphs

Let Z be the cycles � edges matrix for a graph as de-

fined in the paper (p. 266, r. col.). Suppose, for 1 � i,j � e,

a weight wi is associated with edge i and let X be the di-

agonal matrix (xij) with xii = wi, xij = 0 when i � j. The

matrix Zw = ZX is, in the obvious sense, the cycles �
edges matrix of the edge-weighted graph.

Any (�� �) determinant formed from � columns of

Zw is equal to (det U') � q, where U' is the sub-matrix of

Z formed from the corresponding � columns and q is the

product of the corresponding weights. Now U' is

non-singular if and only if the edges that give rise to its

columns form a set of chords of the graph (p. 266, r. col.),

and, in that case, 
det U'
 has the same value, namely 
det

U
 in the notation of this paper, for all such U'.
Applying the Binet-Cauchy Theorem to det (Zw Zw

T)

we find that

det (Zw Zw
T) = (det U)2 � q2

where the sum is taken over all sets of chords of the

graph. The Cycle Theorem for an edge-weighted graph

thus takes the form

det ( )

(det )

Z Z

U

W W

T

2
= � q2.

Let R =
i

e

�
�

1

wi. If R � 0, this result can be re-written as

det ( )

(det )

Z Z

U

W W

R p

T

2 2 2

1
� �

where p is the product of the weights of the edges of a

spanning tree, and the sum is taken over all spanning

trees of the graph.

Note: To assign a weight of zero to an edge is tanta-

mount to deleting that edge from the graph, if it is in-

tended to apply the Matrix Tree Theorem; but an edge of

weight zero cannot be considered as deleted if the Cycle

Theorem is to be applied. Such an edge plays its part

just as any other edge in the formation of cycles.
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SA@ETAK

Teorem o prebrojavanje razapinjaju}ih stabala op}ih kemijskih grafova i njegova detaljna
primjena na toroidalne fulerene

Edward C. Kirby, Douglas J. Klein, Roger B. Mallion, Paul Pollak i Horst Sachs

Dan je teorem koji omogu}uje prebrojavanje razapinjaju}ih stabala za kona~ne povezane grafove pomo}u

dviju determinanti koje se mogu dobiti jednostavno iz njihove ciklus � brid matrice incidencije. Pokazano je

da je Gutman-Mallion-Essamov (GME) teorem iz 1983., koji je bio primjenjiv samo na planarne grafove, spe-

cijalni slu~aj op}enitijega teorema koji su autori nazvali Ciklusni teorem (CT). Determinante koje se javljaju u

CT-u su iste veli~ine kao i one koje se javljaju u GME teoremu kada su razmatrani grafovi planarni, ali je CT

primjenjiv i na neplanarne grafove. Tako je CT pro{irio koncepcijske i ra~unske prednosti GME teorema na

grafove bilo koje vrste. To je od osobite va`nosti za prebrojavanje razapinjaju}ih stabala toroidalnih poliheksa i

drugih ugljikovih struktura koje se mogu smjestiti na torus, kao i na druge neplanarne povr{ine, koje su od

teku}ega istra`iva~koga zanimanja. U ~lanku su autori primijenili CT na neke klasi~ne grafove, kao i na neke

planarne i neplanarne grafove u koje su uklju~ili i primjer tipi~noga toroidalnoga poliheksa.
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