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By subtracting from the graph diameter all topological distances

one obtains a new symmetrical matrix, reverse Wiener RW, with

zeroes on the main diagonal, whose sums over rows or columns

give rise to new integer-number graph invariants �i whose half-

sum is a novel topological index (TI), the reverse Wiener index �.

Analytical forms for values of �i and � of several classes of graphs

are presented. Relationships with other TIs are discussed. Unlike

distance sums, �i values increase from the periphery towards the

center of the graph, and they are equal to the graph vertex degrees

when the diameter of the graph is equal to 2. Structural descrip-

tors computed from the reverse Wiener matrix were tested in a

large number of quantitative structure-property relationship mod-

els, demonstrating the usefulness of the new molecular matrix.

Key words: molecular graph, molecular matrix, structural descrip-

tor, topological index, reverse Wiener matrix, reverse Wiener index,

quantitative structure-property relationships.

INTRODUCTION

A topological index (TI) is a number associated with a chemical struc-

ture represented by a connected graph (usually a hydrogen-depleted graph)

wherein atoms are represented by vertices (points) and covalent bonds by

* Author to whom correspondence should be addressed.
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edges (lines) connecting adjacent vertices.1 The first TIs were introduced in

the late 40s by Wiener2–4 and by Platt.5,6 Since then, many new TIs have

been added for quantitative structure-property relationship (QSPR) and es-

pecially quantitative structure-activity relationship (QSAR) studies.7–21 Se-

veral hundreds of mathematical descriptors derived from molecular graphs

were proposed in the literature, but only a few of them were found useful in

QSPR models.22,23

Wiener’s index, denoted by W, is defined as the sum of all topological dis-

tances in the hydrogen-depleted graph. The topological distance dij between

two graph vertices vi and vj is the number of edges along the shortest path

between these two vertices. The matrix which has as entries dij (topological

distances) is called the distance matrix D of the graph; it is symmetrical

and has zeroes only on its main diagonal. A simple way to compute W from

the distance matrix of the graph is to add all dij entries along the row i or

column i resulting in a local vertex invariant (LOVI) called the distance

sum (or distasum), si, of vertex i:
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Then the Wiener index W is the half-sum of all distasums:
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Like all first-generation TIs which are integer numbers based on integer

LOVIs, the Wiener index has a fairly large degeneracy, i.e. several non-iso-

morphic graphs can correspond to the same W value. In addition, the high-

est contribution to W is made by LOVIs of peripheral vertices which have

the largest si values. With the aim to remedy these two drawbacks of W, re-

search groups in Bucharest24,25 and in Zagreb26 introduced independently a

different matrix, the reciprocal distance matrix RD, whose entries are dij
–1

(the reciprocal values of topological distances). The TI resulted from an op-

eration similar to that leading to W affords a number H termed the Harary

index,24–27 that is denoted also Wi(RD). Since it is based on a rational LOVI

(sums over rows or columns of dij
–1 values in the reciprocal distance matrix),

Wi(RD) has a slightly lower degeneracy than W and the corresponding

LOVIs are highest for the central vertices of the graph.

The present paper starts with the same aim and introduces another type

of symmetrical matrix (reverse Wiener matrix, RW), yielding LOVIs that

are highest for the central graph vertices, and TIs which are termed »re-

verse Wiener indices« denoted by � (it would have been appropriate to pro-
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pose the letter M (because this letter looks like an inverted W) but this nota-

tion was used28 for another one of the Zagreb group indices).

Another type of matrix that was independently proposed in Bucharest29

and in Zagreb30 is the detour matrix D whose entries are the longest paths

between every vertex pair.16,17 Of course, in acyclic graphs there is a single

path between any two vertices; therefore the TI derived analogously to W

from the detour matrix and denoted by Wi(D) is identical to W; in cyclic

graphs, however, Wi(D) differs from W.

REVERSE WIENER MATRIX AND DERIVED DESCRIPTORS

The diameter d of a graph is the largest topological distance between

any two vertices, i.e. the largest dij value in the distance matrix. Starting

from the distance matrix and subtracting from d each dij value, one obtains

a new symmetrical matrix which, like the distance matrix, has zeroes on the

main diagonal and, in addition, at least a pair of zeroes off the main diago-

nal corresponding to the diameter in the distance matrix:
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where �D �
ij is the ij-th element of the distance matrix D which is equal to

the graph distance between vertices vi and vj. Sums over row i or column i of

this matrix are LOVIs called reverse-distance sums denoted by �i. The half-

sum of all �i values affords the reverse-Wiener index �:
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We present below the distance and reverse Wiener matrices, with the

corresponding LOVIs si and �i, for n-pentane (1), 2-methylbutane (2), and

2,2-dimethylpropane (3), respectively.

The complementary distance matrix CD = CD(G) of a graph G with N

vertices is the square N � N symmetric matrix whose elements are defined

as:31
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For alkanes and cycloalkanes it can be observed that all entries in the

reverse Wiener matrix RW are lower by 1 than those in the complementary

distance matrix CD.

Another matrix that has a certain similarity with RW and CD is the dis-

tance complement matrix introduced by Randi}.32 The distance complement

matrix DC = DC(G) of a graph G with N vertices is the square N � N sym-

metric matrix whose elements are defined as:

[DC]ij =
N i j

i j
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General formulas for reverse Wiener indices and the corresponding

LOVIs. First one should note relationships between the Wiener and reverse

Wiener indices as well as their corresponding constituent LOVIs si and �i,

respectively. Since each entry in the RW matrix is the difference d 	 dij and

since there are N 	 1 entries (one being the zero on the main diagonal), we

have:

�i = (N 	 1)d 	 si (7)
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RW(1) si RW(2) si RW(3) s
i

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 0 3 2 1 0 6 1 0 2 1 0 1 4 1 0 1 0 0 0 1

2 3 0 3 2 1 9 2 2 0 2 1 2 7 2 1 0 1 1 1 4

3 2 3 0 3 2 10 3 1 2 0 2 1 6 3 0 1 0 0 0 1

4 1 2 3 0 3 9 4 0 1 2 0 0 3 4 0 1 0 0 0 1

5 0 1 2 3 0 6 5 1 2 1 0 0 4 5 0 1 0 0 0 1

D(1) si D(2) si D(3) si

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 0 1 2 3 4 10 1 0 1 2 3 2 8 1 0 1 2 2 2 7

2 1 0 1 2 3 7 2 1 0 1 2 1 5 2 1 0 1 1 1 4

3 2 1 0 1 2 6 3 2 1 0 1 2 6 3 2 1 0 2 2 7

4 3 2 1 0 1 7 4 3 2 1 0 3 9 4 2 1 2 0 2 7

5 4 3 2 1 0 10 5 2 1 2 3 0 8 5 2 1 2 2 0 7



General formulas for a few classes of simple graphs. We shall discuss ge-

neral formulas for various classes of the simplest graphs. A complete graph

KN has an edge between any pair of its vertices, therefore its diameter d is

1, and all its distance sums are si = N – 1. Thus its Wiener index is W =

½ N(N – 1), and � = 0. Triangles (K3) and tetrahedra (K4) are complete

graphs of orders 3 and 4, respectively. The complete graph K5 will be men-

tioned below in connection with graphs on 5 vertices.

A star graph has a central vertex connected to all remaining vertices

which are endpoints (vertices of degree 1). Its diameter is d = 2. For the cen-

ter vertex we have si = �i = N – 1, whereas for all the other remaining N – 1

vertices si = 1 + 2(N – 2) = 2N 	 3, and �i = 1. It is then easy to show that

the Wiener index is W = (N – 1)2 and that the reverse-Wiener index is � =

N – 1. Propane, isobutane and neopentane are symbolized by hydrogen-de-

pleted graphs of orders N = 3, 4, and 5, respectively.

A linear graph has diameter d = N 	 1. It can be shown that �i = (N 	 1)2 	
si and that W = (N3 – N)/6. Then it follows that � = N(N – 1)(N – 2)/3 = (2N3

	 6N2 + 4N)/6. All normal alkanes (such as n-pentane (1), presented before)

are symbolized by linear graphs.

A 2k-membered cycloalkane corresponds to a ring-graph with order

N = 2k. It can be shown that for such a graph W = k3. Since the diameter is

d = k, it follows that the reverse-Wiener index is � = k3 	 k2 = k2(k 	 1). For

(2k + 1)-membered rings, d = k and the formulas are: W = ½ k(k + 1)(2k + 1)

and � = ½ k(k + 1)(2k 	 1).

The saturated analogs of acenes with h hexagons have N = 4h + 2 verti-

ces and a diameter d = 2h + 1. Their Wiener numbers are W = (16h3 +

36h2 + 26h + 3)/3, and the � indices are � = 2h(16h2 + 12h 	 1)/3. Further

below we shall discuss how one can take into account bond multiplicities

(along with the presence of heteroatoms), and this is why here we do not as-

similate acenes with their saturated derivatives as it is usually done with

Wiener indices.

General considerations about comparisons between the W and L indices,

and between L and other related indices. Both indices W and � increase with

increasing size of graphs. However, W increases faster than � for strongly

branched graphs such as the star graphs, whereas � increases faster than

W for less branched graphs such as the linear graphs or saturated acene de-

rivatives. For ring graphs, W and � increase similarly with increasing N,

but W is always larger than �. By design, LOVIs vary differently: central

vertices have lower si values and higher �i values than marginal vertices.

This variation of �i values is similar to that of LOVIs corresponding to re-

ciprocal distance matrices, and opposite to that of LOVIs derived from the

detour matrix.
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Degeneracies of W and L indices and of the corresponding LOVIs si and

si. For the smallest »identity tree« (the hydrogen-depleted graph symboliz-

ing the carbon skeleton of 3-mehylhexane) whose vertices have no equiva-

lence among them, there is no degeneracy in the LOVIs, as one can see from

the values of �i and si reported in Figure 1. However, each of the four iden-

tity graphs with six vertices (mono-, bi- and tricyclic graphs) of Figure 2 has

at least one pair of non-equivalent vertices with the same LOVI.

All acyclic graphs with 5 vertices, namely compounds 1–3, were pre-

sented with their matrices. In Figure 3 one can see all cyclic graphs 4–20
with 5 vertices (except for the complete graph K5 which being one of the two

fundamental Kuratowski non-planar graphs cannot be embedded on a plane

without crossing edges). In Table I we present for the molecular graphs

4–20 the graph diameter d, the Wiener index W, and the reverse Wiener in-

dex �. It is easy to prove that for all graphs with d = 2 the vertex degrees

degi are identical to the �i LOVIs.

The degeneracy of W and � indices is similar when their graphs have

the same order and diameter because they are related to each other by the

simple relationship (7). One can observe in Table I that indeed W and �

have similar degeneracies. Like W, the smallest alkanes with degenerate �

indices are two pairs of heptane isomers. However, � indices have in general

lower degeneracies than W because in some cases when two graphs have the

same N and W values, their diameters differ; such is the case of 3,3-dime-
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Figure 1. Identity tree with LOVIs: si (left) and si (right).

Figure 2. Identity graphs with degenerate LOVIs: si (upper row) and si (lower row).



thylheptane (W = 98, � = 118) and 2,2,5-trimethylhexane (W = 98, � = 82), or

of 4,4-dimethylheptane (W = 96, � = 84) and 2,3,5-trimethylhexane (W = 96,

� = 120).

The advantage of � indices over W is that for a series of isomers (such as

the alkanes presented in Table II) the � indices have a wider range of varia-

tion than the Wiener indices. At the same time, since this fact leads to over-

lapping ranges of variation, it is advisable for QSAR/QSPR studies to in-

clude a parameter such as N which is a strict measure for the size of the

graph. A drawback of � indices is that for isomers with the same diameter

d, � increases with increasing branching, contrary to the general trend for �

indices.

Presence of multiple bonds and/or heteroatoms. In the distance matrix

one has to input as 1/b the topological distance between two atoms con-

nected by a multiple bond with bond order b (where b = 1 for single bonds, 2

for double bonds, 3 for triple bonds and 1.5 for aromatic bonds). Then the

graph distances and the graph diameter will result as rational numbers in-

stead of integer numbers. The formulas (6) and (7) hold for taking into ac-

count bond multiplicities. It should be recalled that chemical-topological dis-
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TABLE I

Graph diameter, Wiener and reverse Wiener indices for the molecular graphs

4–20 from Figure 3

G d W � G d W � G d W �

4 3 17 13 10 2 14 6 16 2 13 7

5 3 16 14 11 2 14 6 17 2 13 7

6 3 16 14 12 3 15 15 18 2 12 8

7 3 15 5 13 2 14 6 19 2 12 8

8 2 15 5 14 2 13 7 20 2 12 8

9 2 14 6 15 2 13 7

Figure 3. All monocyclic through pentacyclic graphs with five vertices.
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TABLE II

Structure of alkanes and cycloalkanes, number of carbon atoms N, graph

diameter d, reverse Wiener index �, experimental normal boiling temperature tb,

tb computed with formula (8), and residual

No Compound N d �
tb

exp calc res

1 Propane 3 2 2 –42.1 –27.8 –14.3

2 n-Butane 4 3 8 –0.5 0.6 –1.1

3 2-Methylpropane 4 2 3 –11.7 0.0 –11.7

4 n-Pentane 5 4 20 36.1 29.7 6.4

5 2-Methylbutane 5 3 12 27.9 28.7 –0.9

6 2,2-Dimethylpropane 5 2 4 9.5 27.8 –18.3

7 n-Hexane 6 5 40 68.7 59.7 9.1

8 2-Methylpentane 6 4 28 60.3 58.3 2.0

9 3-Methylpentane 6 4 29 63.3 58.4 4.9

10 2,2-Dimethylbutane 6 3 17 49.7 57.0 –7.2

11 2,3-Dimethylbutane 6 3 16 58.0 58.6 –0.6

12 n-Heptane 7 6 70 98.4 90.8 7.6

13 2-Methylhexane 7 5 53 90.1 88.8 1.2

14 3-Methylhexane 7 5 55 91.9 89.1 2.8

15 3-Ethylpentane 7 4 36 93.5 86.9 6.6

16 2,2-Dimethylpentane 7 4 38 79.2 87.1 –7.9

17 2,3-Dimethylpentane 7 4 38 89.8 87.1 2.7

18 2,4-Dimethylpentane 7 4 36 80.5 86.9 –6.4

19 3,3-Dimethylpentane 7 4 40 86.1 87.3 –1.3

20 2,2,3-Trimethylbutane 7 3 21 80.9 86.3 –5.4

21 n-Octane 8 7 112 125.7 123.4 2.3

22 2-Methylheptane 8 6 89 117.7 120.7 –3.1

23 3-Methylheptane 8 6 92 118.9 121.1 –2.1

24 4-Methylheptane 8 6 93 117.7 121.2 –3.5

25 3-Ethylhexane 8 5 68 118.5 118.3 0.3

26 2,2-Dimethylhexane 8 5 69 106.8 118.4 –11.5

27 2,3-Dimethylhexane 8 5 70 115.6 118.5 –2.9

28 2,4-Dimethylhexane 8 5 69 109.4 118.4 –9.0

29 2,5-Dimethylhexane 8 5 66 109.1 118.0 –8.9

30 3,3-Dimethylhexane 8 5 73 112.0 118.8 –6.9

31 3,4-Dimethylhexane 8 5 72 117.7 118.7 –1.0

32 3-Ethyl-2-methylpentane 8 4 45 115.7 115.6 0.1

33 3-Ethyl-3-methylpentane 8 4 48 118.3 115.9 2.3

34 2,2,3-Trimethylpentane 8 4 49 109.8 116.1 –6.2

35 2,2,4-Trimethylpentane 8 4 46 99.2 115.7 –16.5

36 2,3,3-Trimethylpentane 8 4 50 114.8 116.2 –1.4

37 2,3,4-Trimethylpentane 8 4 47 113.5 115.8 –2.3

38 2,2,3,3-Tetramethylbutane 8 3 26 106.5 113.4 –6.9

39 Cyclobutane 4 2 4 12.0 0.1 11.9

40 Ethylcyclobutane 6 4 31 70.7 58.6 12.1



tances b–4 were found33 to reflect the actual relative bond lengths of mul-

tiple bonds much better than b–1.

The presence of heteroatoms can be treated variously,15,34–36 for instance

by including information on the nature of these heteroatoms via their rela-

tive electronegativity or covalent radius, multiplying their �i values by the

corresponding data relative to those of carbon atoms,34 and in addition by

an adjustable parameter which is to be determined from the properties of

the set of compounds used in the QSAR or QSPR study.
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No Compound N d �
tb

exp calc res

41 Methylcyclobutane 5 3 14 36.3 29.0 7.3

42 Butylcyclohexane 10 7 182 181.6 186.9 –5.3

43 Isopropylcyclohexane 9 5 92 154.8 148.7 6.1

44 s-Butylcyclohexane 10 6 95 179.3 176.8 2.5

45 t-Butylcyclohexane 10 5 111 171.5 178.6 –7.1

46 1-Methyl-4-ethylcyclohexane 9 6 126 150.0 152.7 –2.7

47 Propylcyclohexane 9 6 122 156.7 152.2 4.5

48 1,1,3-Trimethylcyclohexane 9 4 62 139.0 145.2 –6.2

49 1,2,4-Trimethylcyclohexane 9 5 98 144.8 149.4 –4.6

50 1,2-Diethylcyclopentane 9 5 93 153.6 148.9 4.7

51 1,1-Dimethylcyclopentane 7 3 24 87.5 85.5 2.0

52 1,2-Dimethylcyclopentane 7 3 23 95.5 85.4 10.1

53 Ethylcyclopentane 7 4 45 103.5 87.9 15.6

54 Methylcyclopentane 6 3 19 71.8 57.2 14.6

55 1-Methyl-2-propylcyclopentane 9 5 90 152.6 148.5 4.1

56 Cyclopropane 3 1 0 –32.7 –28.0 –4.7

57 1,1-Dimethylcyclopropane 5 2 5 20.6 27.9 –7.3

58 1,2-Dimethylcyclopropane 5 3 14 33.0 27.8 5.2

59 Ethylcyclopropane 5 3 13 34.5 28.8 5.7

60 Methylcyclopropane 4 2 4 0.7 0.1 0.6

61 1,1,2-Trimethylcyclopropane 6 3 19 52.6 57.2 –4.6

62 1,4-Dimethylcyclohexane 8 5 78 121.8 119.4 2.4

63 Ethylcyclohexane 8 5 76 131.8 119.2 12.6

64 Propylcyclopentane 8 5 73 131.0 118.8 12.2

65 Isopropylcyclopentane 8 4 50 126.4 116.2 10.2

66 1,1,2-Trimethylcyclopentane 8 3 28 113.5 113.6 –0.1

67 1,1,3-Trimethylcyclopentane 8 4 54 104.9 116.6 –11.7

68 1,1-Dimethylcyclohexane 8 4 53 119.5 116.5 3.0

69 1,2-Dimethylcyclohexane 8 4 52 126.6 116.4 10.2

70 1,3-Dimethylcyclohexane 8 4 51 122.3 116.3 6.0

TABLE II (continued)



QSPR model for the normal boiling temperatures of saturated hydrocar-

bons. Because the boiling temperatures at normal pressure (tb) are among

the properties that are determined with the highest accuracy, many new to-

pological indices are validated by seeing whether they can be correlated sat-

isfactorily with tb.
37–55 Among the set of compounds that were thus used for

testing, alkanes were the most frequently used.37–39 Studies involving cyclo-

alkanes,39 haloalkanes,43–46 oxygen and sulfur analogues of alkanes devoid

of hydrogen bonding (i.e. oxa- and thia-alkanes)47 have also been reported.

In Table II we present the results of the biparametric correlation betwe-

en tb of 38 alkanes plus 32 cycloalkanes using the following equation:

tb = 0.1166 (
 0.0471)� + 27.67 (
 1.03)N 	 111.02 (
 5.56) (9)

r2 = 0.9769 s = 7.62 °C F = 1416 .

When each of the two above variables was used in single-parameter cor-

relations, the results were:

tb = 28.91 (
0.58)N 	 120.31 (
4.24) (10)

r2 = 0.9748 s = 7.91 °C F = 2630

tb = 1.1780 (
 0.0872)� + 31.76 (
 5.42) (11)

r2 = 0.7286 s = 25.9 °C F = 182 .

Evidently, most of the variance in tb of saturated hydrocarbons is ac-

counted for by the number N of carbon atoms, but TIs (and � in particular)

improve the correlation.

QSPR models for alkane properties. In this section we present a more

complete evaluation of topological indices derived from the reverse Wiener

matrix. The QSPR models were developed for a data set consisting of 134 al-

kanes between C6 and C10, for the following six physical properties:51 tb, boi-

ling temperature at normal pressure / °C; Cp, molar heat capacity at 300

K / J K–1 mol–1; � f G°300 (g), standard Gibbs energy of formation in the gas

phase at 300 K / kJ mol–1; � vapH300, vaporization enthalpy at 300 K / kJ

mol–1; nD
25, refractive index at 25 °C; �, density at 25 °C / kg m–3. The value

of the refractive index of 2,2,3,3-tetramethylbutane is missing, while the re-

ported density of this compound, 821.70 kg m–3, is too high when compared

with the density of similar alkanes and it was not considered in the compu-

tation of the density QSPR models. As it is known, there are 142 constitu-

tional isomers for these alkanes, but data for all six properties are missing

for the following eight of them: n-hexane, n-nonane, n-decane, 2-methyl-
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nonane, 3-methylnonane, 4-methylnonane, 5-methylnonane, 3-ethyl-2,4-di-

methylhexane. Three Wiener-type indices from three molecular matrices

were computed for all alkanes in the data base: W from the distance matrix

D, Wi(RD) from the reciprocal distance matrix RD, and � from the reverse

Wiener matrix RW.

The first test considers monoparametric QSPR models of the six proper-

ties obtained for the set of 34 nonanes in the data base. The QSPR equation

developed for an isomeric series of alkanes models only the branching effect

on the investigated properties, because the size is constant.
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TABLE III

Statistical indices of the monoparametric QSPR models for the six alkane

properties developed for the set of 34 nonane isomers. The MLR equations

have the general form: P = a0 + a1SD.

SD a0 a1 r s F

(1) boiling temperature at normal pressure, tb / °C

W 1.32076e+02 5.41250e–02 0.0727 5.99 0.2

Wi(RD) 1.57187e+02 –1.10628e+00 –0.1125 5.97 0.4

� 1.32440e+02 5.16607e–02 0.2301 5.84 1.8

(2) molar heat capacity at 300 K, Cp / J K
–1

mol
–1

W 2.20969e+02 –8.74038e–02 –0.1934 3.58 1.2

Wi(RD) 1.96106e+02 9.15039e–01 0.1533 3.60 0.8

� 2.14465e+02 –2.01675e–02 –0.1480 3.60 0.7

(3) standard Gibbs energy of formation in the gas phase at 300 K,

� fG ° 300 (g) / kJ mol
–1

W 9.74336e+01 –7.28077e–01 –0.8147 4.18 63.1

Wi(RD) –1.41436e+02 9.38664e+00 0.7955 4.37 55.1

� 4.71375e+01 –2.09551e–01 –0.7779 4.53 49.0

(4) vaporization enthalpy at 300 K, �vapH300 / kJ mol
–1

W 2.34270e+01 1.47433e–01 0.7817 0.95 50.3

Wi(RD) 7.41091e+01 –2.02918e+00 –0.8148 0.88 63.2

� 3.39150e+01 3.91916e–02 0.6894 1.10 29.0

(5) refractive index at 25 °C, nD
25

W 1.46644e+00 –6.09712e–04 –0.7680 0.0041 46.0

Wi(RD) 1.26955e+00 7.68607e–03 0.7333 0.0044 37.2

� 1.42120e+00 –1.42059e–04 –0.5937 0.0052 17.4

(6) density at 25 °C, � / kg m
–3

W 8.51898e+02 –1.31689e+00 –0.7666 8.89 45.6

Wi(RD) 4.29691e+02 1.64310e+01 0.7244 9.55 35.3

� 7.55141e+02 –3.17172e–01 –0.6126 10.95 19.2



In Table III we present the coefficients of the QSPR model P = a0 + a1SD,

where P is the property and SD the structural descriptor, and the corre-

sponding statistical indices r, s, and F. An inspection of these results shows

that none of the three indices is able to model the boiling temperature and

molar heat capacity of the nonanes. For the remaining four properties we

have obtained significant correlations with all descriptors; W correlates best

with the standard Gibbs energy of formation, refractive index, and density,

while Wi(RD) is the top index for the modeling of the vaporization enthalpy.

The reverse Wiener index � gives QSPR models comparable with those ob-

tained with the W and Wi(RD) indices, but the statistical indices show that

constantly these equations are on the third place.

In Table IV we present the QSPR models obtained in a second test, in

which we have considered all 69 decanes in the data base. The examination

of these results shows a great similarity with the results obtained for no-

nanes. All QSPR models for the boiling temperature and molar heat capac-

ity of the decanes are of poor statistical quality, while for the other four

properties we have obtained good correlations. The best equations are ob-

tained with the same indices identified in the case of nonanes: W for the

standard Gibbs energy of formation, refractive index, and density, while

Wi(RD) is the best index for the vaporization enthalpy. Although the reverse

Wiener index � gives significant QSPR models for the last four alkane prop-

erties, they are always on the third place, after those obtained with W and

Wi(RD).

The third test considers monoparametric QSPR models of the six proper-

ties obtained for all 134 alkanes in the data base. To the set of three topolog-

ical indices we have added N, the number of carbon atoms, representing a

size parameter. The use of the number of carbon atoms offers the possibility

to decide if a particular topological index provides better correlations than a

simple descriptor like N. The results reported in Table V show that N gives

the best correlations with the boiling temperature and molar heat capacity,

while the remaining four properties are modeled best with Wiener-type indi-

ces computed from the D and RD matrices: W for the vaporization enthalpy,

and Wi(RD) for the standard Gibbs energy of formation, refractive index,

and density. The reverse Wiener index � gives significant QSPR models for

the boiling temperature, molar heat capacity, and vaporization enthalpy, but

again the statistical indices show that constantly these equations are on the

last place.

In Table VI we present the QSPR models with two descriptors with the

general form: P = a0 + a1N + a2SD. Obviously, in the case of the boiling tem-

perature and molar heat capacity the addition of a topological index does

not improve the correlation. The QSPR models for the remaining four prop-
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erties are significantly improved by the use of a biparametric equation. The

models that contain N and W give the best results for the standard Gibbs

energy of formation, refractive index, and density, while the vaporization

enthalpy is computed best by the model which contains N and Wi(RD). The

QSPR models containing the reverse Wiener index � give good correlations,

but they are constantly ranked on the last place.

However, it is not possible to draw definite conclusions on the utility of

the reverse Wiener matrix from QSPR models computed only with the re-

verse Wiener index �. Powerful structural descriptors for QSPR and QSAR

studies were recently proposed,14–16 such as the spectral operators MinSp
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TABLE IV

Statistical indices of the monoparametric QSPR models for the six alkane

properties developed for the set of 69 decane isomers. The MLR equations

have the general form: P = a0 + a1SD.

SD a0 a1 r s F

(1) boiling temperature at normal pressure, tb / °C

W 1.75008e+02 –1.25760e–01 –0.2090 5.95 3.1

Wi(RD) 1.27330e+02 1.47842e+00 0.1706 5.99 2.0

� 1.59210e+02 –2.12718e–03 –0.0114 6.08 0.0

(2) molar heat capacity at 300 K, Cp / J K
–1

mol
–1

W 2.29274e+02 4.59573e–02 0.0957 4.83 0.6

Wi(RD) 2.58898e+02 –1.11093e+00 –0.1607 4.79 1.8

� 2.32503e+02 2.06689e–02 0.1391 4.81 1.3

(3) standard Gibbs energy of formation in the gas phase at 300 K,

�fG°300 (g) / kJ mol
–1

W 1.57251e+02 –9.23260e–01 –0.8379 6.08 157.9

Wi(RD) –2.38890e+02 1.30107e+01 0.8200 6.38 137.5

� 7.19181e+01 –2.55293e–01 –0.7484 7.39 85.3

(4) vaporization enthalpy at 300 K, �vapH300 / kJ mol
–1

)

W 2.58281e+01 1.19941e–01 0.7342 1.12 78.3

Wi(RD) 8.11932e+01 –1.87275e+00 –0.7961 1.00 115.9

� 3.69949e+01 3.25300e–02 0.6432 1.26 47.3

(5) refractive index at 25 °C, nD
25

W 1.49424e+00 –5.97134e–04 –0.8093 0.0044 127.2

Wi(RD) 1.23520e+00 8.54722e–03 0.8044 0.0044 122.9

� 1.43541e+00 –1.36667e–04 –0.5983 0.0060 37.3

(6) density at 25 °C, � / kg m
–3

W 9.02324e+02 –1.24386e+00 –0.8361 8.25 155.6

Wi(RD) 3.70822e+02 1.74258e+01 0.8134 8.75 131.0

� 7.78933e+02 –2.78038e–01 –0.6036 11.99 38.4



and MaxSp,14,27,35 the Ivanciuc-Balaban operator IB,19,35 and the informa-

tion-theoretic operators U, V, X, and Y.59–61 In a comparative study we have

computed these structural descriptors from four molecular matrices, namely

the distance D, reciprocal distance RD, reverse Wiener RW, and reciprocal

936 A. T. BALABAN ET AL.

TABLE V

Statistical indices of the monoparametric QSPR models for the six alkane

properties developed for the set of 134 alkanes C6–C10. The MLR equations

have the general form: P = a0 + a1SD.

SD a0 a1 r s F

(1) boiling temperature at normal pressure, tb / °C

N –7.89057e+01 2.38593e+01 0.9727 6.19 2314.7

W 5.61843e+01 8.04704e–01 0.9200 10.44 727.2

Wi(RD) 4.36055e+00 7.25382e+00 0.9522 8.14 1281.9

� 9.19692e+01 4.66784e–01 0.7358 18.04 155.8

(2) molar heat capacity at 300 K, Cp / J K
–1

mol
–1

N 3.68919e+00 2.31610e+01 0.9870 4.10 4977.7

W 1.34137e+02 7.87790e–01 0.9415 8.59 1030.1

Wi(RD) 8.43197e+01 7.05216e+00 0.9677 6.43 1943.9

� 1.70291e+02 4.45982e–01 0.7349 17.28 155.0

(3) standard Gibbs energy of formation in the gas phase at 300 K,

� fG°300 (g) / kJ mol
–1

N –6.98957e+01 1.08960e+01 0.8008 8.85 236.0

W –1.80935e+00 3.05788e–01 0.6303 11.47 87.0

Wi(RD) –3.86365e+01 3.67569e+00 0.8699 7.29 410.5

� 1.89608e+01 1.07045e–01 0.3042 14.08 13.5

(4) vaporization enthalpy at 300 K, �vapH300 / kJ mol
–1

N 4.19465e+00 3.70044e+00 0.9303 1.58 849.5

W 2.39338e+01 1.36507e–01 0.9625 1.17 1659.8

Wi(RD) 1.82633e+01 1.06308e+00 0.8606 2.20 376.9

� 2.91761e+01 8.73040e–02 0.8487 2.28 339.9

(5) refractive index at 25 °C, nD
25

N 1.30795e+00 1.10360e–02 0.8751 0.0066 428.3

W 1.37508e+00 3.27253e–04 0.7246 0.0094 144.8

Wi(RD) 1.34197e+00 3.59759e–03 0.9205 0.0053 727.5

� 1.39366e+00 1.50562e–04 0.4578 0.0122 34.7

(6) density at 25 °C, � / kg m
–3

N 5.36027e+02 2.08349e+01 0.8545 13.75 354.4

W 6.64045e+02 6.05436e–01 0.6933 19.07 121.3

Wi(RD) 5.99459e+02 6.83462e+00 0.9045 11.29 589.2

� 6.99283e+02 2.70179e–01 0.4249 23.96 28.9



reverse Wiener RRW matrices.62 Using the same data base of 134 alkanes

and six properties, we have found that the molar heat capacity, standard

Gibbs energy of formation and vaporization enthalpy are best modeled by

QSPR equation containing TIs derived from RW and RRW:

Cp = 7.0528(
0.5476) + 1.6605(
0.1289)MW +

+ 0.308320(
0.002394)Ho(RRW) – 0.44721(
0.03472)Y(RRW)

r = 0.9883 s = 3.92 F = 1817.4
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TABLE VI

Statistical indices of the biparametric QSPR models for the six alkane properties

developed for the set of 134 alkanes C6–C10. The MLR equations have

the general form: P = a0 + a1N + a2SD.

SD a0 a1 a2 r s F

(1) boiling temperature at normal pressure, tb / °C

W –8.94748e+01 2.58599e+01 –7.47941e–02 0.9730 6.17 1163.6

Wi(RD) –8.80419e+01 2.66552e+01 –8.83326e–01 0.9729 6.19 1158.9

L –7.52488e+01 2.32053e+01 2.28650e–02 0.9730 6.18 1162.0

(2) molar heat capacity at 300 K, Cp (J K
–1

mol
–1

)

W 3.82198e+00 2.31358e+01 9.39654e–04 0.9870 4.11 2470.0

Wi(RD) –1.91531e+00 2.48760e+01 –5.41864e–01 0.9871 4.10 2488.4

L 4.71755e+00 2.29771e+01 6.42994e–03 0.9870 4.11 2475.0

(3) standard Gibbs energy of formation in the gas phase at 300 K,

� f G°300 (g) / kJ mol
–1

W –1.71303e+02 3.00914e+01 –7.17624e–01 0.9159 5.96 340.8

Wi(RD) 3.71533e+01 –2.18629e+01 1.03499e+01 0.9186 5.86 353.9

L –1.05707e+02 1.73005e+01 –2.23914e–01 0.9081 6.21 308.0

(4) vaporization enthalpy at 300 K, �vapH 300 / kJ mol
–1

W 2.08719e+01 5.43594e–01 1.18019e–01 0.9633 1.16 844.5

Wi(RD) –1.61998e+01 9.94151e+00 –1.97181e+00 0.9755 0.95 1285.8

L 1.00272e+01 2.65735e+00 3.64687e–02 0.9604 1.21 778.8

(5) refractive index at 25 °C, nD
25

W 1.23050e+00 2.57545e–02 –5.52542e–04 0.9490 0.0043 588.6

Wi(RD) 1.38161e+00 –1.13884e–02 7.06758e–03 0.9352 0.0049 453.0

L 1.28678e+00 1.48583e–02 –1.35163e–04 0.9181 0.0054 348.6

(6) density at 25 °C, r / kg m
–3

W 3.70513e+02 5.22859e+01 –1.18069e+00 0.9459 8.62 552.3

Wi(RD) 6.88474e+02 –2.55788e+01 1.46283e+01 0.9245 10.13 382.3

L 4.91226e+02 2.89228e+01 –2.86008e–01 0.9069 11.20 301.0



�fG°300 = –146.290(
22.465) + 31.1837(
4.789)IB(D) + 3.6879(
0.5663)

IB(RW)+ 4.8087(
0.7384)V(RD)

r = 0.9564 s = 4.35 F = 464.6

�vapH300 = –10.1766(
0.7470) + 6.6102(
0.4852)MaxSp(RD) +

+ 1.6844(
0.1236)V(RD) + 0.71313(
0.05235)X(RW)

r = 0.9895 s = 0.63 F = 2033.4

In the QSPR equation that models the molar heat capacity, MW is the

molecular weight and Ho(RRW) is the Hosoya index21,63 representing the

sum of the coefficients of the characteristic polynomial64 computed from the

RRW matrix. The above three models demonstrate the utility of the new mo-

lecular matrix in the computation of topological indices with good corre-

lational power.

CONCLUDING REMARKS

Molecular graph descriptors represent valuable structural descriptors

that can be used with success in developing QSPR and QSAR models; in such

structure-property studies, graph descriptors can be used in conjunction with

other classes of structural descriptors, such as constitutional, geometrical,

electrostatic, and quantum descriptors. In the present study we have defined

a new molecular matrix derived from graph distances, namely the reverse

Wiener matrix RW, and a Wiener-type index derived from it, the reverse

Wiener index �. The new topological index was tested in a QSPR model for

the normal boiling temperature of a set of alkanes and cycloalkanes. A com-

parative study was performed for a set of 134 alkanes between C6 and C10,

with Wiener-type indices computed from the distance D, reciprocal distance

RD, and reverse Wiener RW matrices. The data base contains experimental

values for six alkane properties: normal boiling temperature, molar heat ca-

pacity, standard Gibbs energy of formation, vaporization enthalpy, refractive

index, and density. Although the reverse Wiener index � gave significant cor-

relations for these properties, when used in monoparametric equations its

performances were lower than of the Wiener-type indices derived from the

distance and reciprocal distance matrices. However, an extended study that

used a larger set of structural descriptors demonstrated that topological indi-

ces computed from the reverse Wiener matrix RW and the reciprocal reverse

Wiener matrix RRW give better QSPR models than the topological indices

derived from the D and RD matrices. The results obtained in these QSPR in-

vestigations demonstrate the utility of the reverse Wiener matrix in comput-

ing useful molecular descriptors.
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SA@ETAK

Obratni Wienerovi indeksi

Alexandru T. Balaban, Denise Mills, Ovidiu Ivanciuc i Subhash C. Basak

Ako se sve topologijske udaljenosti oduzmu od dijametra grafa, dobije se nova si-

metrijska matrica nazvana obrnuta Wienerova matrica RW. Na glavnoj dijagonali

obrnute Wienerove matrice RW nalaze se nule, a zbrojevi redova ili stupaca matrice

daju nove invarijante grafa ozna~ene sa si. Polovica svih vrijednosti si nekoga grafa

daje novi topologijski indeks (TI) nazvan obrnuti Wienerov indeks, L. Dane su ana-

liti~ke formule za si i L za nekoliko klasa jednostavnih grafova. Indeks L uspore|en

je sa srodnim topologijskim indeksima (TI). Utvr|eno je da vrijednosti si rastu od pe-

riferije prema sredi{tu grafa i da su jednake valencijama vrhova grafa kada je dija-

metar grafa jednak 2. Prou~ena je uporabivost obrnutih Wienerovih indeksa u mode-

liranju odnosa strukture i svojstava molekula. Pokazalo se da ti novi topologijski

indeksi dobiveni iz obrnute Wienerove matrice daju bolje modele nego topologijski in-

deksi izvedeni iz matrice udaljenosti i matrice zaobilaznih udaljenosti.

REVERSE WIENER INDICES 941


