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Let G = (V, E) be a simple graph with n = |V | vertices and m = |E | edges; let d1, d2, …, dn

denote the degrees of the vertices of G. If D = max
i

id ≤ 4, G is a chemical graph. The first and

second Zagreb indices are defined as

M1 = di

i

2

∈
∑

V

and M2 = d di j

i j, ∈
∑

E

.

We show that for all chemical graphs M1/n ≤M2/m. This does not hold for all general graphs,

connected or not.
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INTRODUCTION

We follow the graph theoretical terminology of Berge,1

to which we refer for undefined terms. Let G = (V, E)

denote a simple graph with n = |V | vertices and m = |E |

edges. Let d1, d2, …, dn denote the degrees of the

vertices of G. If D = max
i

id ≤ 4, G is called a chemical

graph. The first and second Zagreb indices were defined

35 years ago2 as:

M1 = d
i

i

2

∈
∑

V

and M2 = d d
i j

i j, ∈
∑

E

They were among the first topological indices3–6 to

be proposed and were often applied, as explained in a re-

cent paper called »The Zagreb Indices 30 Years Later«.7

That paper and a couple of further surveys8,9 spurred re-

search on mathematical properties of the Zagreb indi-

ces.10–18 A natural issue is to compare the values of the

Zagreb indices on the same graph. Observe that, for ge-

neral graphs, the order of magnitude of M1 is O(n3) (n

vertices and degrees in O(n), squared) while the order of

magnitude of M1 is O(n4) (m = O(n2) edges and degrees

in O(n), squared). This suggests comparing M1/n with

M2/m instead of M1 and M2.

Use of the AutoGraphiX system19–21 led to the fol-

lowing:

Conjecture 1. – For all simple connected graphs G:

M1/n ≤ M2/m (1)

and the bound is tight for complete graphs.

As will be shown below, this conjecture turned out to

be false for general graphs but true for chemical graphs.



MAIN RESULT

We now state a result slightly more general than the

Conjecture and valid for chemical graphs.

Theorem 1. – For all chemical graphs G with order n,

size m, first and second Zagreb indices M1 and M2:

M1/n ≤ M2/m.

Moreover, the bound is tight if and only if all edges

(i, j) have the same pair (di, dj) of degrees or if the graph

is composed of disjoint stars S5 and cycles Cp, Cq, … of

any length.

Proof: Let G be a chemical graph, i.e., D(G) £ 4. Denote

by mij the number of edges that connect vertices of de-

grees i and j and by ni the number of vertices of degree i

in G. On the one hand, we have:

M

n

1 ( )G =

d

ni

i N

( )

( )

n

n

2

∈

∈

∑

∑
V G

=

n i

m m

i

i

i N

i ij

j N

i N

⋅

+
∈

∈

∈

∑
∑

∑

2

=

m m

i
i

m
i j

i ij

j N

i N

ij

i j

+

⋅

















⋅ +

 




∈

∈

≤

∑
∑

∑

2

1 1
=

m m i

m
i j

ii ij

j Ni N

ij

i

+










⋅













⋅ +

 




∈∈

≤

∑∑
1 1

j

∑
=

m i j

m
i j

ij

i j

ij

i j

⋅ +

⋅ +

 




≤

≤

∑

∑

( )

1 1
(2)

On the other hand, we have:
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Putting (2) and (3) into (1), we get:
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Now, collecting in the same summand the cases where

roles of (i, j) and (k, l) are reversed, one gets relation (4).
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It remains to prove relation (4). It is sufficient to

show that:

g(i,j,k,l) = i2j2l + i2j2k + k2l2j + k2l2i – i2jkl –

ij2kl – ijk2l – ijkl2 ³ 0

for each (i,j),(k,l) Í {1,2,3,4}2. The values of g(i,j,k,l)

are given in Table I.

One can see that all entries are non-negative, which

proves the claim.

To show when relation (4) is satisfied as an equality,

consider again function g(i,j,k,l) and its values as given

in Table I. To have equality in (1), one must have

g(i,j,k,l) = 0 for all mij · mkl > 0. This can only happen if

there is a single pair of degrees for all edges, or if either

i = k = 1, j = l = 4 or i = j = k = l = 2 for all edges. This

last case corresponds to a set of disjoint stars S5 and

cycles Cp, Cq, … of any length.

To finish, we show that (1) does not hold for general

graphs. If G is not connected the condition D £ 4 cannot

be relaxed. Indeed, let us observe graph G1 presented in

Figure 1.

We have:

M
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. .

Obviously, the relation (1) does not hold.

Finding a connected counterexample is a bit more

difficult.

Let G'1 be the disjoint union of K(U1,V1), …,

K(U4,V4) where each K(X,Y) is a complete bipartite

graph with classes X and Y. Let |U1 | = |U2 | = 3, |V1 | =

|V2 | = 10 and |U3 | = |U4 | = |V3 | = |V4 | = 5.

Obviously, we have n3(G'1) = 20, n10(G'1) = 6 and

n5(G'1) = 20. Also, m3,10(G'1) = 60 and m5,5(G'1) = 50.

Let ui, u'i Î Ui and ni, n 'i Î Vi be arbitrary (pairwise

different) but fixed vertices. Let G'2 be the graph defined

by:

G'2 = G'1 – {u1v1, u'2v'2, u2v2, u'3v'3, u3v3, u4v4} È

{u1v'2, u'2v1, u2v'3, u'3v2, u'3v4, u4v'3}

which is illustrated in Figure 2 (dashed lines are deleted

and solid lines are added).

Obviously, no vertex has changed its degree. Note

that m3,10(G'2) = m3,10(G'1) – 3 + 2 = 59; m5,5(G'2) =

m5,5(G'2) – 3 + 2 = 49, m5,10(G'2) = 1 and m3,5(G'2) = 1.
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TABLE I. Value of function g(i,j,k,l)

{i,j}

{1,1} {1,2} {1,3} {1,4} {2,2} {2,3} {2,4} {3,3} {3,4} {4,4}

{k,l}

{1,1} 0 1 4 9 12 35 70 96 187 360

{1,2} 1 0 1 4 8 32 72 105 220 448

{1,3} 4 1 0 1 4 27 70 108 243 520

{1,4} 9 4 1 0 0 20 64 105 256 576

{2,2} 12 8 4 0 0 8 32 60 160 384

{2,3} 35 32 27 20 8 0 8 27 108 320

{2,4} 70 72 70 64 32 8 0 6 64 256

{3,3} 96 105 108 105 60 27 6 0 27 168

{3,4} 187 220 243 256 160 108 64 27 0 64

{4,4} 360 448 520 576 384 320 256 168 64 0

Figure 1. A non-connected counterexample to Conjecture 1.

Figure 2. A connected counterexample to Conjecture 1.



We have:

M

n

1 2( ' )G
=

20 5 6 10 20 3

20 6 20

2 2 2⋅ + ⋅ + ⋅
+ +

=
1280

46
≈ 27.826

M

m

2 2( ' )G
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59 3 10 49 5 5 1 3 5 1 5 10

59 49 1 1

⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅
+ + +

( ) ( ) ( ) ( )
=

1770 1225 15 50

110

+ + +
=

3060

110
≈ 27.818.

CONCLUSION

The Zagreb indices M1 and M2, divided by order n

and size m, respectively, have been compared. The

AutoGraphiX system conjectured that M1/n £ M2/m for

simple connected graphs. A counterexample with 48

vertices (and beyond the range of AutoGraphiX) shows

that this is not so. However, we have proven that this

relation holds for chemical graphs, which are the most

interesting ones in practice.
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SA@ETAK

Usporedba zagreba~kih indeksa

Pierre Hansen i Damir Vuki~evi}

Neka je G = (V, E) jednostavan graf s n = |V | vrhova i m = |E | bridova; neka d1, d2, …, dn ozna~avaju

stupnjeve vrhova u G. Ako je D = max
i

di ≤ 4, tada G nazivamo kemijskim grafom. Prvi i drugi zagreba~ki

indeks definirani su formulama:

M1 = di

i

2

∈
∑

V

i M2 = d di j

i j, ∈
∑

E

.

U radu je dokazano da je M1/n £ M2/m za sve kemijske grafove, te da se ova tvrdnja ne mo`e poop}iti na sve

grafove, kako povezane tako i nepovezane.
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