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A possible extension of Zagreb indices to weighted graphs representing heterosystems is pre-

sented. It is based on the novel definition of the Zagreb indices by way of the here introduced

Zagreb matrices. A theorem is given that is valid for the first Zagreb index of strongly weight-

ed graphs.
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ORIGINAL DEFINITION OF ZAGREB INDICES

A pair of molecular descriptors, denoted by M1 and M2,

was introduced 35 years ago.1 They were originally de-

fined as:

M1 =
vertices

∑ d(i) d(i) (1)

M2 =
edges

∑ d(i) d(j) (2)

where d(i) is the degree of vertex i and d(i) d(j) is the

weight of edge i–j.2 These descriptors were given a va-

riety of names in the literature, e.g.,3,4 but they were most

often called the Zagreb indices.5 The Zagreb indices have

found extensive applications in the structure-property-

activity modeling; for summary see Refs. 3, 5 and 6.

These indices are also included in a number of programs

for the routine computation of molecular descriptors.7

Mathematical and computational properties of the Zagreb

indices are also continuously reported, e.g. Refs. 8 and 9.

DEFINITION OF ZAGREB INDICES VIA ZAGREB
MATRICES

The Zagreb indices can be also defined in terms of the

special graph-theoretical matrices that we have named

the Zagreb matrices:

M1 =
i

∑ [ZM] ii (3)

M2 = (1/2)
i j≠
∑ [ZM]ij (4)

where ZM is the Zagreb matrix defined as:
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(5)

It should be noted that the Zagreb matrices belong

to a class of adjacency matrices.10 The concept of graph-

-theoretical matrices as generators of descriptors was ini-

tially explored by Randi} et al.11 and later by Diudea12

and others.5,10

ZAGREB INDICES FOR HETEROSYSTEMS

To express Zagreb indices via Zagreb matrices is a rath-

er convenient way of computing these indices for the

molecules with heteroatoms. In the past, the Zagreb in-

dices were applied almost exclusively to hydrocarbons,

which are represented by simple molecular graphs in che-

mical graph theory.2 Molecules containing heteroatoms

can be represented by weighted graphs.2 In our case, we

use the vertex-weighted molecular graphs.13 We denote

the weight of the weighted vertex by w to indicate that

this vertex is 'different' from the rest of vertices standing

for carbon atoms.

In Figure 1, as an example, we give hydrogen-sup-

pressed 2-methylpentane, the corresponding simple graph

(tree) and its vertex-degrees. Likewise in Figure 2, we

give the hydrogen-suppressed ethyl isopropyl ether, the

corresponding weighted graph (weighted tree – vertex

belonging to the oxygen is denoted by a black dot) and

its vertex degrees (the degree of the black-labeled vertex

is denoted 2w).

Below we give the Zagreb matrix of the molecular

tree B and weighted molecular tree D.

ZM(B) =

The Zagreb indices of B can be obtained straightway

from ZM (M1(B) = 20 and M2(B) = 18).

The Zagreb matrix of D differs from the one of B in

the positions that contain the vertex with weight w.

ZM(B) =

The corresponding values of the Zagreb indices are

M1(D) = 16 + 4w2 and M2(D) = 8 + 10w; for w = 1, M1(D)

and M2(D) are reduced, of course, to M1(B) and M2(B).

Different schemes for assigning the numerical value

to w are available.14–20 However, there is no unique recipe

for selecting the numerical value of w. The pragmatic ap-

proach is to consider w as the variable parameter whose

optimal value is the result of the fitted procedure in the

structure-property-activity modeling. There is also an

additional, still not satisfactorily solved, problem related

to assigning the numerical values of the multiple bonds.

A THEOREM FOR THE FIRST ZAGREB INDEX OF
WEIGHTED GRAPHS

Theorem

For each a,b,c ∈ N such that a,b,c ≥ 110. There is a

weighted graph with one set of vertices weighted by 1

and another set of vertices weighted by w such that

M1(G) = aw2 + bw + c.
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otherwise
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Figure 1. The hydrogen-depleted 2-methylpentane A, the corres-
ponding labeled simple graph (tree) B and its vertex-degrees B’.

Figure 2. The hydrogen-depleted ethyl isopropyl ether C, the cor-
responding weighted graph (weighted tree – black dot denotes the
position of oxygen) D and its vertex degrees (the degree of the
black-labeled vertex is denoted 2w) D’.
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Proof

Let us start with the weighted thorn graph21–23 G, shown

below (white vertices are weighted by 1 and black verti-

ces by w – edge weights are given beside the edges).

Let G(x1, x2, x3, x4, x5, x6, x7, x8, x9), where x1, x6, x9 ≥ 0,

x2, x3, x4, x7, x8 ∈ {0,1} and x5 ∈ {0,1,2,...,6–2x4} be a

graph obtained by (see the following figure):

1) adding x1 black vertices to edge v1v2 and thus

transforming it to a path of length x1 + 1

2) adding x2 fragments denoted by X2 to the neigh-

bors of v3

3) adding x3 fragments denoted by X3 to the neigh-

bors of v3

4) adding x4 fragments denoted by X4 to the neigh-

bors of v4

5) adding x5 fragments denoted by X5 to the neigh-

bors of v4

6) adding x6 white and x6 black vertices in the alter-

nating order to edge v5v6 and thus transforming it to a

path of length 2x6 + 1

7) adding x7 fragments denoted by X7 to the neigh-

bors of v7

8) adding x8 fragments denoted by X8 to the neigh-

bors of v7

9) adding x9 vertices to edge v8v9 and thus transform-

ing it to a path of length 2x9 + 1

It can be easily seen that:

M1(G) = 66w2 + 52w + 26

and that:

M1(G(x1, x2, x3, x4, x5, x6, x7, x8, x9)) =

(66 + 4x1 + 41x2 + 6x3)w
2 + (52 + 31x4 + 10x5

+ 8x6)w + (26 + 41x7 + 6x8 + 4x9)

Let us show that with appropriate combination of

numbers x1, x2 and x3 one can get any number ≥ 112 (as

a factor that multiplies w2):

• Choosing values x2 = x3 = 0 and x1 = 11,12,13,...

one obtains numbers: 110, 114, 118,...

• Choosing values x2 = 1, x3 = 0 and x1 = 1,2,3 one

obtains numbers: 111, 115, 119,...

• Choosing values x2 = 0, x3 = 1 and x1 = 10,11,12

one obtains numbers: 112, 116, 120,...

• Choosing values x2 = 1, x3 = 1 and x1 = 0,1,2 one

obtains numbers: 113, 117, 121,...

Now, let us show that with appropriate combination

of numbers x4, x5 and x6 one can get any number ≥ 106

(as a factor that multiplies w):

• Choosing values x4 = 0, x5 = 3 and x6 = 3,4,5,...

one obtains numbers: 106, 114, 122,…

• Choosing values x4 = 1, x5 = 0 and x6 = 3,4,5,...

one obtains numbers: 107, 115, 123,…

• Choosing values x4 = 0, x5 = 0 and x6 = 7,8,9,...

one obtains numbers: 108, 116, 124,…

• Choosing values x4 = 1, x5 = 1 and x6 = 2,3,4,...

one obtains numbers: 109, 117, 125,…

• Choosing values x4 = 0, x5 = 5 and x6 = 1,2,3,...

one obtains numbers: 110, 118, 126,…

• Choosing values x4 = 1, x5 = 2 and x6 = 1,2,3,...

one obtains numbers: 111, 119, 127,…

• Choosing values x4 = 0, x5 = 6 and x6 = 0,1,2,...

one obtains numbers: 112, 120, 128,…

• Choosing values x4 = 1, x5 = 3 and x6 = 0,1,2,...

one obtains numbers: 113, 121, 129,…

Finally, let us show that with appropriate combina-

tion of numbers x7, x8 and x9 one can get any number ≥
70 (as a factor that multiplies w):

• Choosing values x7 = 0, x8 = 0 and x9 = 11,12,13,...

one obtains numbers: 70, 74, 78,…
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• Choosing values x7 = 1, x8 = 0 and x9 = 1,2,3,...

one obtains numbers: 71, 75, 79,…

• Choosing values x7 = 0, x8 = 1 and x9 = 10,11,12,...

one obtains numbers: 72, 76, 80,…

• Choosing values x7 = 1, x8 = 1 and x9 = 0,1,2,...

one obtains numbers: 73, 77, 81,…

Hence, all possible polynomials with factors greater

or equal to 112 are obtainable.

CONCLUSION

This topic was selected for our report because of an

increasing number of publications on the properties and

applications of the Zagreb indices in the last couple of

years, but not a single one on the Zagreb indices of the

weighted graphs, e.g. Refs. 24–33.
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Zagreba~ki indeksi: pro{irenje na ute`ene grafove koji predstavljaju molekule s heteroatomima

Du{anka Jane`i~, Sonja Nikoli}, Ante Mili~evi}, Nenad Trinajsti} i Damir Vuki~evi}

Razmatrano je mogu}e pro{irenje Zagreba~kih indeksa na ute`ene grafove koji predstavljaju heterosusta-

ve. To se pro{irenje temelji na novoj definiciji Zagreba~kih indeksa pomo}u novouvedenih Zagreba~kih ma-

trica. Dan je i teorem za prvi Zagreba~ki indeks koji vrijedi za jako ute`ene grafove.
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