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Abstract 

Motivation. This report was motivated by a recent work of Gutman, Rücker and Rücker on walks in simple 
molecular graphs, i.e., graphs without multiple edges and loops. 
Method. Three methods for counting walks in general graphs, i.e., graphs with multiple bonds and loops, are 
presented: (i) graphical method based on the Morgan summation procedure, (ii) method based on augmented 
adjacency matrices of higher orders and (iii) method based on eigenvalues and eigenvectors of augmented 
adjacency matrices of higher orders. They represent extensions of the methods discussed previously in the 
literature for simple graphs. 
Results. The total walk count (twc) was used as a measure for complexity of general graphs. It is shown that twc
indices increase with size, branching, cyclicity, the number of loops and multiple bonds, and decrease with 
symmetry of general graphs. 
Conclusions. The total walk count appears to be a valuable tool to account for complexity for several types of 
molecular graphs. 
Keywords. Augmented adjacency matrix; complexity; general graph; total walk count; vertex–degree; walk; 
walk count; topological index; structural descriptor. 

1 INTRODUCTION 

This report was motivated by a recent work of Gutman, Rücker and Rücker [1] on walks in 
simple molecular graphs, i.e., graphs without multiple edges and loops, and by papers of Randi
[2,3] and others [4–6] on complexity of (molecular) graphs. Since in these papers there is hardly 
any discussion about complexity of general graphs, we decided to report our work on complexity of 
these graphs using the graph theoretical concept of walks. General graphs [7] are graphs in which 
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multiple edges and/or loops are allowed. These graphs can be used to represent molecules with 
multiple bonds and a variety of heteroatoms. Note that a loop is an edge with both of its vertices 
identical. A loop is also called a 1–cycle. 

General graphs are sometimes called non–simple graphs [8]. Harary [9] calls graphs with 
multiple edges multigraphs and graphs with multiple edges and loops presudographs. Pseudographs 
are also called loop–multigraphs [10]. Cvetkovi , Doob and Sachs [11] use the term multigraphs for 
general graphs. In both of these terms, i.e., multigraphs and general graphs, the misleading term 
“presudograph” or unwieldy term “loop–multigraph” does not appear. An illustrative example of a 
general molecular graph is given in Figure 1. 

1 2

34

C N

C C

G azacyclobutadiene 

Figure 1. A labeled general molecular graph G corresponding to azacyclobutadiene.

A walk in a general graph is any sequence of consecutive edges and loops. The length (k ) of the 
walk is the number of edges (E) and loops (L) in it. For example, there are many possible walks 
between vertices 1 and 3 in G given in Figure 1: 1–2–3 (k = 2), 1–2–2–3 (k = 3), 1–4–3 (k = 2), 1–
4–1–2–3 (k = 4), etc. 

The total walk count (twc) is the sum of (molecular) graph walk counts of different lengths 
(mwc):

max

1

k

k
kmwctwc (1)

where mwck is the number of all walks of length k and kmax is the length of the longest walk agreed 
to consider in a given case. 

The total walk count was found to be very useful as a molecular descriptor in QSPR modeling 
[12,13]. Similarly, twc is also used as a criterion for molecular complexity [6,14,15]. 
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2 METHODS FOR THE ENUMERATION OF WALKS IN GENERAL
GRAPHS 

There are at least three methods to compute the walk counts and total walks counts in simple 
graphs [1]. However, in order to extend them to general graphs we need to use the augmented 
(weighted) adjacency matrix [16], i.e., the adjacency matrix in which the non–zero elements appear 
on the diagonal, reflecting loops in a graph and some off–diagonal elements may have values 
greater than one, reflecting multiple edges in a graph. Randi  and Basak utilized the augmented 
adjacency matrix in their work on the variable connectivity index [17]. 

The degree of a vertex in a (general) graph is equal to the number of edges meeting at this 
vertex. However, the degree of a vertex with a loop is taken to be the number of edges meeting at 
this vertex plus two for the loop, because the loop contributes twice to the number of edges incident 
at the vertex. Observe that the loop can be traversed in clockwise or anticlockwise fashion. 
Consider the vertex–degrees G given in Figure 1: 

3 5

33
G

It can be seen that with these rules the handshaking lemma remains valid; and therefore the 
choice of weights is not arbitrary at all: 

V

i

LEid
1

)16(2)(25333)( (2)

where d(i) is the degree of vertex i and V is the number of vertices in G.

The following methods are used for counting walks in general graphs: (1) Graphical approach 
based on the Morgan summation procedure (this approach was used for simple graphs by Rücker 
and Rücker [12]); (2) The use of the augmented adjacency matrices of higher orders [16] (the 
number of elements in the k–th adjacency matrix is equal to mwc of the length k, mwck); and (3) 
using the eigenvectors and eigenvalues of augmented adjacency matrices for various values of k.
Below we will illustrate each of these three methods. 
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2.1 Graphical Method 
The graphical method for counting walks in a graph is described by Rücker and Rücker [12]. It is 

based on the Morgan extended connectivities (EC) [18], which are obtained from the degrees of all 
vertices in G by iterative summation over all neighbours. Rücker and Rücker [12] proved that the 
EC’s and mwck’s are identical. This was first observed by Razinger [19]. 

The graphical procedure can be summarized in the following steps [12]. For a walk of length 1
starting at vertex i, there are d(i) possibilities. If one arrives to a particular vertex j by a walk of 
length k from vertex i, then the number of possibilities to extend this walk by one step is equal to 
degree of j. The sum of the degrees of all end–vertices j of walks of length k gives the number of 
walks of length k + 1. This can be formalized by the following expression: 

)(
1 )()(

ij
kk jmwcimwc (3)

where j(i) denotes a first neighbor of vertex i and the summation is over all such neighbors. The 
application of this graphical method to general graphs is presented in Figure 2. 

(i) k = 1 (ii) k = 2 

3 5

33

11 19

139
mwc1 = 14 mwc2 = 52 

(iii) k = 3 (iv) k = 4 

37 75

4735

145 281

185121
mwc3 = 194 mwc4 = 732 

Figure 2. Application of the graphical method to counting walks with up to k = 6 in the graph G from Figure 1.
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(v) k = 5 (vi) k = 6 

523 1077

683475

2027 4043

26291729
mwc5 = 2758 mwc6 = 10428 

Figure 2. (Continued).

2.2 Method Based on the Augmented Adjacency Matrix 
The use of the (augmented) adjacency matrix is based on the relationship between the matrix–

elements and the number of walks, that is, (Ak)ij is the number of walks of length k in G starting at 
vertex i and ending at vertex j. Thus mwck is given by: 

V

i

V

j
ijkmwc

1 1
)( kA (4)

The use of this method is illustrated in Table 1. The input data for our computer program are the 
vertex connectivities and kmax. The program automatically sets up the augmented adjacency matrix 
and produces matrices of higher orders (k = 2, 3,..., kmax) by straightforward matrix multiplications. 
The sums of the matrix–elements are equal to mwck for given k.

Table 1. Augmented Adjacency Matrix, Matrices of Higher Orders and Molecular Walk Counts with up to k = 6 

(i) k = 1 (ii) k = 2 
mwc1 mwc2

A1 =
0    1    0    2      3
1    2    2    0      5
0    2    0    1      3
2    0    1    0      3
                     14

A2 =
5    2    4    0      11
2    9    4    4      19
4    4    5    0      13
0    4    0    5 9

52

(iii) k = 3 (iv) k = 4 
mwc3 mwc4

A3 =
 2     17     4     14      37
17    28    22     8       75
 4     22     8     13      47
14     8     13     0 35
                       194

A4 =
45     44     48     8       145
44    117    64    56      281
48     64     57    16      185
 8      56     16    41      121

      732
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Table 1. (Continued) 

(v) k = 5 (vi) k = 6 
mwc5 mwc6

A5 =
 60     229     96     138       523
229    406    290    152      1077
 96     290    144    153       683
138    152    153     32 475
                                 2758

A6 =
505     710    596    216      2027
710    1621   964    748      4043
596     964    733    336      2629
216     748    336    429      1729

              10428

2.3 Method Based on Eigenvectors and Eigenvalues of Augmented Adjacency 
Matrices for Various Values of k

This method is based on the relationship between walks of length k, eigenvectors (cri; i = 1, 2, ..., 
N) and eigenvalues k

r  of the augmented adjacency matrices with various values of exponent k [1]:
V

r

k
rrkmwc

1
(5)

where
2

21 )...( rVrrr ccc (6)

Note that if r is a degenerate eigenvalue, then the sum of r over all degenerate eigenvectors is a 
true graph invariant [1]. 

Our computer program mentioned above gives also eigenvectors and eigenvalues of the 
corresponding augmented matrices. Therefore, it contributes walk counts by using equations (5) and 
(6). This is shown in Table 2. 

Table 2. Walk Counts Calculated up to k = 6 using Graph Eigenvectors and Eigenvalues for the G from Figure 1. 
Below Each Set of Data the mwc Values are Given 

(i) k = 1 
Eigenvalues 
3.7792 1.4906 –0.5980 –2.6718 

Coefficients of Eigenvectors 
0.3630 0.5753 0.4628 –0.5684 
0.7368 –0.4562 0.3827 0.3203 
0.4739 –0.1715 –0.7285 –0.4640 
0.3175 0.6569 –0.3297 0.5992 

mwc1 = 14.0000000 

(ii) k = 2 
Eigenvalues 
14.2821 7.1385 2.2219 0.3576 
Coefficients of Eigenvectors 
0.3630 –0.5684 0.5753 0.4628 
0.7368 0.3203 –0.4562 0.3827 
0.4739 –0.4640 –0.1715 –0.7285 
0.3175 0.5992 0.6569 –0.3297 

mwc2 = 52.0000000 
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Table 2. (Continued) 

 (iii) k = 3 
Eigenvalues 
53.9743 3.3120 –0.2138 –19.0724 
Coefficients of Eigenvectors 
–0.3630 0.5753 0.4628 0.5684 
–0.7368 –0.4562 0.3827 –0.3203 
–0.4739 –0.1715 –0.7285 0.4640 
–0.3175 0.6569 –0.3297 –0.5992 
mwc3 = 194.0000000 

(iv) k = 4 
Eigenvalues 
203.9778 50.9576 4.9368 0.1279 
Coefficients of Eigenvectors 
–0.3630 0.5684 0.5753 0.4628 
–0.7368 –0.3203 –0.4562 0.3827 
–0.4739 0.4640 –0.1715 –0.7285 
–0.3175 –0.5992 0.6569 –0.3297 
mwc4 = 732.0000000 

(v) k = 5 
Eigenvalues 
770.8655 7.3588 –0.0765 –136.1478 
Coefficients of Eigenvectors 
–0.363 0.5753 0.4628 0.5684 

–0.7368 –0.4562 0.3827 –0.3203 
–0.4739 –0.1715 –0.7285 0.4640 
–0.3175 0.6569 –0.3297 –0.5992 
mwc5 = 2758.0000000 

(vi) k = 6 
Eigenvalues 
2913.2270 363.7583 10.9690 0.0457 
Coefficients of Eigenvectors 
–0.3630 0.5684 0.5753 0.4628 
–0.7368 –0.3203 –0.4562 0.3827 
–0.4739 0.4640 –0.1715 –0.7285 
–0.3175 –0.5992 0.6569 –0.3297 
mwc6 = 10428.0000000 

All three methods reviewed above give, of course, identical mwc and twc values. However, of all 
three methods exposed above, the most convenient method to calculate these indices automatically 
is the third method. Our computer program based on this method consists of the following steps: (a)
Input data – vertex connectivities and the value of kmax; (b) setting up the augmented adjacency 
matrices with various exponents corresponding to lengths of walks we wish to calculate and getting 
their eigenvectors and eigenvalues; (c) calculation of molecular walk counts using equations (5) and 
(6); and (d) calculation of total walk counts using equation (1). Printouts list the values of mwc and 
twc for walks of various lengths. 
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3 COMPLEXITY OF GENERAL (MOLECULAR) GRAPHS 

The notion of complexity and its antonym, simplicity, are topics which belong basically to the 
realm of philosophy. Nevertheless, complexity of chemical structures has been studied by means of 
graph invariants (topological indices) [2–6]. Most authors agree that any measure used to study 
complexity of structures encountered in chemistry should satisfy the homology principle, i.e., the 
index should increase with the graph (molecular) size and reflect the principal structural features 
such as branching, cyclicity, multiple edges, loops and symmetry. These structural features are 
interconnected. Therefore, if we wish to study the influence of one particular structural feature on 
molecular complexity, it will be practically impossible to keep other structural features constant, 
though we may minimize their influence on the complexity of a series of molecules under the 
considerations. This is what we will do here. 

3.1 Influence of Size 
To study the influence of the size on complexity of general graphs we have selected four acyclic 

general graphs shown in Figure 3. The increase in the size is reflected in the increase of the number 
of vertices and edges, and consequently in the lengths of walks and in the values of twc indices. We 
computed walks with up to the largest self–returning walk (a walk that starts and ends at the same 
vertex) which does not repeat itself unnecessarily in toto or in parts, the length of which is denoted 
by ksrw (in this case ksrw is kmax). For example, such a self–returning walk in graph 1 from Figure 3 is 
1–2–3–3–2–1 (ksrw = 5). There are, of course, longer self–returning walks possible, such as in 1 1–
2–1–2–3–3–2–1, but this walk has a part that repeats itself. Thus, in our example given in Figure 3, 
twc is computed in 1 for k = 1 – ksrw (= 5), in 2 for k = 1 – ksrw (= 7), in 3 for k = 1 – ksrw (= 9) and in 
4 for k = 1 – ksrw (= 11). 

1 2 3

1           2
712        7628 

3
68590 

4
577978 

Figure 3. Four acyclic general graphs and the values of their twc indices. 
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Of course, it could be argued, for example, that two–edge connection between adjacent vertices 
is a 2–cycle, therefore the graphs that we consider are not acyclic. This is true in mathematical 
sense. However, a two–edge connection corresponds to a double bond which is not considered as a 
cycle in chemistry. The twc index ordered these graphs as expected 1 < 2 < 3 < 4, indicating the 
enormous increase in complexity on going from 1 to 4. This is the same order that is given by the 
size in terms of either edges or vertices or both. Therefore, the increase in the general graph size 
causes the increase in the graph complexity. This agrees with studies on simple graphs. 

3.2 Influence of Branching 
We again consider acyclic general graphs. Two branched trees and the corresponding 

unbranched tree are given in Figure 4. The same computation as above was carried out. Thus, twc
indices for graphs shown in Figure 4 were computed in 5 for k = 1– ksrw (= 13), in 6 for k = 1– ksrw

(= 13) and in 7 for k = 1– ksrw (= 13). 

5
4744904 

6
5542802 

7
6488628 

Figure 4. Unbranched acyclic graph 5, two branched graphs 6 and 7 and their twc indices, computed for walks with up 
ksrw = 13. The protobranched vertex in 5 and branched vertices in 6 and 7 are denoted by black dots. 

The twc index ordered these graphs as 5 < 6 < 7, indicating that graph complexity increases with 
branching. Branching is an intuitive concept not uniquely defined, though it can be identified 
through the appearance of vertices of degrees three and higher. Thus, the same order is obtained if 
we consider the degree of the branched vertex. 
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3.3 Influence of Cyclicity 
In studying the influence of cyclicity on the general graphs complexity we will discard 1– and 2–

cycles from the consideration in agreement with the above. We selected three general cyclic graphs, 
shown in Figure 5. 

8 9 10 
2890274 11071652 24263590 

Figure 5. Three general cyclic graphs with their twc indices, given below each graph, computed for walks with up 
to kmax = 10. 

There is a dramatic increase in the values of twc with the increase of the number of cycles. Graph 
8 has four 4–cycles (in Figure 6 we indicate these four cycles), graph 9 has four 3–cycles and four 
4–cycles and graph 10 has eight 3–cycles and four 4–cycles. Thus, the complexity of these graphs 
increases with the number cycles (and also with their size in terms of edges): 8 < 9 < 10. This is so 
because with the increase in the number of cycles the number of walks also increases. It should also 
be noted that the three cyclic graphs considered differ in their sizes in terms of edges. Therefore, 
considering the conclusion reached in section 3.1 the same complexity order can be reached by 
considering only the number of edges in these graphs. Gratifying is that the conclusions reached by 
considering cyclicity and graph sizes are not contradictory. 

Figure 6. Four underlying 4-cycles in graph 8.

3.4 Influence of Loops 
We have investigated the influence of loops on the graph complexity considering a graph with 

multiple bonds, but without a loop (11) and the related graph with a loop (12), see Figure 7. 
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11 12 
153744 202400 

Figure 7. General graphs with and without loop. Their twc indices are given beneath each 
graph and are computed for walks with up to k = 8 (selected as kmax in this case). 

Judging from the values of twc given in Figure 7, loops increase considerably the complexity of 
a graph. It is interesting to note that the position of a loop also influences the complexity of a graph. 
This is illustrated in Figure 8. 

13 14 15 
 2808976 1923376  8310848 

Figure 8. Three general graphs in which positions of two loops are cis (13), trans (14) and on the same vertex (15). 
Their twc indices are given below each graph and are computed for walks with up to k = 9 (kmax).

All these three graphs have the same size, but the positions of loops vary and strongly influence 
the complexity of the graphs. The most complex is graph 15 in which both loops are on the same 
vertex, while cis–position of loops leads to more complex graph than the trans–position; the 
complexity order for these graphs is 14 < 13 < 15. The much greater value of the twc index for 15
may also be attributed in part to the increase of the degree of the vertex denoted by black dot in the 
figure.

3.5 Influence of Multiple Edges 
Multiple edges increase complexity of general graphs. This is illustrated in Figure 9. The 

complexity order of these graphs: 16 < 17 < 18 is also predicted by the size increase in terms of 
edges. However, even if we keep the same size of graphs in terms of vertices and edges, as in 
graphs 8 and 18, the graph with triple edges (18; twc = 117589258) is much more complex than the 
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graph with two double edges (8; twc = 2890274); their twc values were computed for walks with up 
to k = 10. 

16 17 18 
  211454  1659066 117589258 

Figure 9. Graph 16 with all single edges between vertices, graph 17 with one double edge and graph 18 with one triple 
edge. Their twc indices are given below each graph and are computed for walks with up to k = 10 (kmax).

3.6 Influence of Symmetry 
We considered two graphs: one asymmetric (19) and one symmetric (20). These graphs and the 

corresponding twc values, computed for walks with up to k = 10, are given in Figure 10. As 
expected asymmetric graph 19 is a more complex structure than symmetric graph 20. The same 
observation was also made in the case of simple graphs [6]. 

19 20 
1441178 236820 

Figure 10. Asymmetric graph 19, symmetric graph 20 and their twc values computed for walks with up to k = 10 (kmax).

4 CONCLUSIONS 

We have reviewed methods for computing walks in simple graphs (graphs without multiple 
edges and loops) and have shown that these can be extended to general graphs (graphs with multiple 
edges and loops) using the concepts of augmented distance matrix and Morgan summation 
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procedure extended to embrace loops. We also developed a computer program for calculating the 
total walk count (the twc index). This index has been used in the literature among other things as a 
numerical criterion for molecular graph complexity. Here we applied this index to complexity of 
various general graphs. The following results were obtained: twc indices and molecular graph 
complexities increase with size, branching, cyclicity, loops and multiple bonds and with lower 
symmetry of general graphs. The same conclusions are reached for simple graphs. However, loops 
and multiple bonds increase profoundly the complexity of general graphs due to many more 
possibilities for walks that do not exist in simple graphs. 
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