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DESIGN ON TOPOLOGICAL INDICES. 1

DEFINITION OF A VERTEX TOPOLOGICAL INDEX
IN THE CASE OF 4-TREES
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Distance imatrix of a 4-tree was used in defining eighteen vertex topological indices.
The best definition was chosen, which ensures a low degeneracy and a large interval
of values.

1. INTRODUCTION

Molecular topology determines a large number of molecular pro-
perties ranging from physicochemical and thermodynamic properties to
chemical reactivity and biological activity. Organic molecules are repre-
sented by hydrogen-depleted graphs depicting the covalent bonds between
non-hydrogen atoms. In graph theory, alkanes are represented as 4-trees.
A 4-tree is a connected graph without cyeles and with no vertex with the
degree greater than 4. The topology of a chemical structure can be coded
in matrix form by the use of the adjacency matrix and the distance matrix,?

The adjacency maitrix 2 of a graph G with N vertices, A(G) = A, i8
the square N X N symmetric matrix which contains information about
the connectivity of vertices in G. Its entries are defined as :

ali ] _

{1, for vertices i, j adjacent
0, otherwise

The distance matrix of a graph G with N vertices, D(G)==D, is
a square N X N symmetric matrix, whose entries, d;;, are equal to the
number of edges connecting vertices i and j on the shortest path between
them. The two types of matrices are interrelated and the distance matrix
an be computed from the adjacency matrix using a simple algorithm
based on the adjacency matrices of higher orders.?

From the practical point of view, an efficient way of coding the
topology of a chemical structure is represented by the topological indices.*5
A topological index (II) is a numerical quantity which characterizes
the bonding topology of a molecule.

The problem of chemical species classification is a difficult task.

* Correspondence address: strada N. Grigorescu, 18/2 2730 Hunedoara, Romania
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For example, the number of alkane constitutional isomers increases very
rapidly with the number of carbon atoms, being equal with ¢ 75
for O,oH,., 366,319 for CyoH,,, 4, 111, 846, 763 for CgHg, 62, 431,
801, 147, 341 for CpHg, and 1, 117, 743, 651, 746, 953, 270 for C50H, ya-
In order to classify such a great number of structures, topological indices
with high discriminating power are strongly needed.

An almost general deficiency of topological indices is that they do
not characterize uniquely the topology of a molecular graph, but are more
or less degenerate, i.e. two or more nonisomorphic structures may lead to
the same numerical value for a certain topological index. There are two
possible exceptions : the smallest binary notation (SBN) of a graph, intro-
duced by Randi¢?’~1° and according to Hosoya’s conjecture,'* the distance
polynomial and the distance polynomial index Z’.

By definition, the vertex topological index (VII) ix a numerical
quantity associated with a certain vertex of the chemical graph, which
expresses the local topology of the chemical structure.

In the present paper, a design of a VII for 4-trees is presented. The
definition obtained ensures a minimum degeneracy and a good distribution
of the values. A number of informational TI’s are computed, based on the
defined VTI’s. The rules of branching!? at constant number of vertices are
tested for the computed TI's.

2. THE DEFINITION OF THE VERTEX TOPOLOGICAL INDEX

The molecular topology will be defined by the aid of the distance
matrix, because it contains a larger quantity of information concerning the
molecular structure. In equations (1)—(18), eighteen types of VTI’s are
defined. The valence (degree) v, of the vertex i is equal to the number of
neighbours of the vertex i.

N

VIT-Y, = ¥ 4, (1)
j=1
N

VTI-.?i _— Z dle'i (2)
j==1
N

‘rTI-3i = Z dijvrl (3)
j=1
N

VII-4 = ¥ d;v; (4)
j=1
N

VII-5 = Y] dijvy (5)

j=1

N
‘v‘TTI-61 - Z dg_jViVj (6)
j=1
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N
-V.TI'Ti == 21 (lijVﬂ’}'l (7)
]==
. ' N
"TI-Si == Zl dijVi"IVj (8)
]z:
N
VTI-9, = Z{ dyvitvit (9)
j==
. N
VTI-10, = ¥, dg* (10)
j=1
N p
VTI-11; = ¥ dgitv, (11)
j=1
N
VTI-12, = Y} dij'dvi? (12)
j=1
N
VTI-13 = ¥, dij'vy (13)
j=1
N
VTI-14, =Y, dj'vi? (14)
j=1
N
VFTI‘151 == Z di_j-lviVj (15)
j=1
N
VTI-16, = Z ditvvit (16)
j=1
L
VTI-17; = zl dilvitv, (17)
Jn
N
VTI-18, = E dgtvitvi? (18)

j=1

We have to note that VTII has the same definition as the distance
sum index.13

3. THE SELECTION OF THE BEST VERTEX TOPOLOGICAL INDEX

Computations of the VI1’s were done for all 147 4-trees with N = 4
to 10 vertices. For the case of 4-trees with ten vertices, table 1 presents
the minimum value, the maximum value, the average value, the standard
deviation and the dispersion of the respective VTI. The dispersion of the
values of a VI is defined as :

VTImax — VTImin

D= (19)
YTIav
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Table 1

The minimum value, the maximum value, the average value, the standard deviation and the
dispersion of the VTI’s in the case of 4-trees with ten vertices

No. VTI Minimum Maximum Average Stapdgrd Dispersion
value value value deviation
1. VTI-1 14. 45. 25.90 35.24 1.197
2, VTI-2 22, 96. 42.81 228.77 1.729
3. VTI-3 3.5 45, 19.26 119.56 2.155
4. VTI-4 19.0 81.0 42.81 140.95 1.448
5. VTI-5 11.83 30.0 19.26 12.55 0.943
6. VTI-6 35.0 156.0 69.42 550.64 1.743
7. VTI-7 7.25 69.33 32.26 139.28 1.615
8. VTI-8 4.75 81.0 32.26 374.53 2,364
9. VTI-9 2.98 30.0 14.19 58.89 1.906
10. VTI-10 2.83 6.5 1.26 0.729 0.863
11, VTI-11 2.83 26.0 8.37 35.21 2.767
12. VTI-12 1.36 4.17 2.74 0.667 1.025
13. VTI-13 5.5d 12.0 8.37 1.76 0.771
14. VTI-14 ‘ 1.47 5.08 2.74 0.629 1.321
15. VTI-15 5.55 46.0 15.74 92.64 2.571
16. VTI-16 1.47 20.33 5.61 20.59 3.365
17. VTI-17 1.93 9.67 5.61 4.60 1.380
18. VTI-18 1.02 2.71 1.70 0.180 0.995

It is not practical to choose a VII with a small interval of values,
or with a small standard deviation, or with a small dispersion, like VTI-10,
VTI-12, VTI-13, VTI-14 or VTI-18.

Another comparison considers the distribution of numerical values
of the VTI’s, exemplified for the 75 decane isomers in table 2. Some of the
definitions used give a very uneven distribution of the VII’s: VTI-2,
VTI-3, VI'I-6, VI'1-7, VII-11, VTI-15, VTI-16 in the lower range; VTI-9,
VTI-12 a distribution with gaps T ; and VT-14, VTI-5 with a central dis-
tribution. More evenly distributed are VTI-1, VII-8, VTI-10 and VTI-13.

Table 3 presents the number of degenerations of the VTI’s for all
the 4-trees with N = 4 to 10 vertices. It may be seen that VTI-1, VTI-,
VTI-6, VTI-2, VTI-3 and VTI-8 have a high degeneracy and low selecti-
vity. On the other hand, VTI-15, VIT-17, VTI-19, VTI-7 and VTI-13
have a fairly low degeneracy and high selectivity. VII-15 and VTI-17
present degeneracy for the same two alkanes : 4-Et-octane and 4-Et-2,3-
di-Me-hexane. VTI-9 presents degeneracy for the 4-trees representing
3-Me-nonane, 2,6-di-Me-octane and 3-Et-4-Me-heptane. )

At this level of information it is hard to choose between VTI-135,
VTI-17 and VTI-9. It is interesting to see if they carry the same type of
information on molecular topology. Table 4 presents the intercorrelation
matrix of the VTI’s. The intercorrelation between VTI’s varies from insig-
nificant (for example, between VTI-1 and VTI-7, VTI-2 and VTI-4,
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Number of degenerations of the VTI’s and of the
informational TI’s E,and I, defined on the respec-

tive VTI’s, in the case of 4-trees
10 vertices. There are no degencracies for I

with N =4 to

Number | Number | Number

No VI of giegene— of Qegene- of c}egene-

rations of jrations ofjrations of
VTI E ‘ I
1 VTI-1 115 5 1
2 VTI-2 39 1 0
3 VTI-3 32 2 1
4 VTI-4 115 5 0
5 VTI-5 16 3 0
6 VTI-6 48 1 0
7 VTI-7 5 0 0
3 VTI-8 32 4 0
9 VTI-9 3 1 0
10 VTI-10 13 0 0
11 VTI-11 7 0 0
12 VTIi-12 7 2 0
13 VTI-13 6 2 1
14 VTI-14 18 0 0
15 VTIi-15 2 0 0
16 VTI-16 18 0 0
17 VTI-17 2 1 0
18 VTI-18 18 2 0

Table 2

Histogram presenting the distribution of the VTUI’s in the case of 4-trees with ten vertices
| INTERVAL

t |2 |3 | 4 | 5 | 8 7 | 8 9 10
VTI-1 52 98 129 139 138 88 56 33 11 6
VTI-2 186 138 122 92 90 66 27 19 7 3
VTI-3 135 148 100 13 33 117 108 60 26 10
VTI-4 52 98 129 139 138 38 56 33 11 6
VTI-5 36 84 123 130 136 109 78 33 14 5
VTI-6 150 163 134 113 85 51 26 16 7 5
VTI1-7 222 124 75 101 86 61 38 24 13 6
VTI-8 141 161 84 14 58 124 91 53 18 6
VTI-9 129 104 148 15 0 51 145 106 43 9
VTI-10 58 116 156 95 83 98 47 52 26 19
VTI-11 354 2 206 29 10 76 28 0 17 28
VTI-12 61 99 86 130 20 26 79 86 109 54
VTI-13 34 70 98 125 129 137 81 48 20 8
VTI-14 65 162 134 127 91 55 50 27 26 13
VTI-15 350 18 113 106 32 45 40 18 17 11
VTI-16 354 34 202 1 43 69 2 1 25 19
VTI-17 51 104 100 112 39 51 84 89 68 52
VTI-18 68 145 128 70 68 73 75 71 28 22

’ Table 3
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Table

The matrix displaying the intercorrelation coefficients

VTL1| VTI-2] VI3 |VII-4|VTI-5| VIL6 | VTI-7 | VI8 | VTI-9
|
VTI1  [1.000 | 0.112 |  0.834 [0.998 10.977 | 0.245 | —0.008 | 0.846 | 0.803
VTI-2 1.000 | —0.418 {0.073 [0.117 | 0.987 | 0.982 | —0.395 | —0.455
\VTI-3 1.000 |0.852 |0.814 | —0.302 | —0.507 | 0.999 |  0.992
VTI-4 1.000 {0.968 | 0.210 | —0.051 0.865 | 0.819
VTI-5 1.000 | 0.241 0.025 | 0.822 | 0.806
VTL-6 1.000 | 0.945 | —0.278 | —0.343
VTI-7 1.000 | —0.486 | —0.530
VTI-8 1.000 |  0.988
VTI-9 1.000
VTI-10
VTI-11
VTI-12
VTI-13
VTI-14 !
VTI-15 |
VTI-16
VTI-17
VTI-18

VTI-13 and VTI-17, VTI-13 and VTI-18), through weak (between VTI-2
and VTI-15, VTI-13 and VTI-17), to high (between VTI-1 and VTI-4,
VTI-11 and VTI-16, VTI-12 and VTI-17). The intercorrelation coefficients
indicate that VTI-9 and VTI-7 express approximately the same type of
information, different from the information contained in VTI-15. Thus,
the use of VTI-9 and VTI-17 in developing a TI is almost equivalent and
we will prefer VTI-17 for its lower degeneracy.

Tt is well known that informational TI's are suited for characterizing
molecular branching.!? In order to test the branching rules at constant
number of vertices, three types of informational TI’s, based on the eighteen
types of VTI-s defined, were computed: the informational energy
content 14

E =% pf (20)
the total information content 15
I = 2 VTILlog, ¥, VII; — ¥ VTI; log, VTI; (21)

the mean information content!®

I'=— ¥ pilog, p, (22)
VTI;
Y VTT,
Table 3 shows the number of degenerations of the informational TI’s

computed. The informational energy content has a rather high number of
degenerations, in contrast with the total information content index which

where p; =
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d

between the eighteen types of VTI's defined

VTI-10 | VII-11 | VTI-12 VTI-13 VTI-14 VTI-15 VTI-16 | VTI-17 VTI-18

—0.372 |—0.,469 0.515 | —0.216 | —0.1460 | —0.471 | —0.475 0.458 0.417

0.715 0.746 | —0.651 ! 0.377 0.714 0.726 0.72¢ . —0.667 | —0.614
—0.685 | —0.756 0.827 | —0.393 | —0.748 | —0.763 | —0.740 | 0.783 0.724
—0.427 |—0.507 0.523 | —0.277 | —0.505 | —0.515 } —0.510 ‘ 0.465 | 0,420
—0.304 1--0.437 0.548 | —0.115 . —0.388 | —0.429 |, —0.440 0.495 0.489

0.606 0.630 | —0.575 (.290 0.600 0.607 0.608 | —0.599 | —0.554

0.801 0.829 | —-0.687 0.462 0.814 0.815 0.813 | —0.695 | —0.621
—0.683 1—0.743 0.802 | —0.408 | —0.742 | —0.753 | —0.727 0.756 0.696
~0.679 '—0.769 0.866 | —0.359 | —0.739 | —0.771 | —0.750 0.826 0.785

1.000 0.916 | —0.585 0.830 0.952 0.956 0.882 | —0.554 | —0.484
1.000 | —0.780 0.558 0.954 0.985 0.991 | —0.762 | —0.693
1 000 | —0.105 1 —0.683 | —0.743 | —0.772 0.996 0.963
1.000 0.675 0.669 0.500 | —0.057 | —0.015
1.000 0.957 0.955 | —0.655 | —0.538
1,000 0.961 | —0.718 | —0.657
1.000 1 —0.755 | —0.669
1.000 0.968
1.000

l

has no degenerate value for all VII’s. We have to note that VTI-15 has
no degenerated value, unlike VTI-17 which has a degeneracy in the case
of the informational energy index. This fact is an argument in the favour
of VTI-15. The analysis based on the order induced by the total informa-
tion content index, shows that both VTI-15 and VTI-17 closely follow
the rules for branching at constant number of vertices. Their value increases
when branching increases.

Based on the VTI-1 (the distance sum index) it was defined a very
diseriminating TI, J.%18 By calculations it was determined that there are
no J-equivalent nonisomorphic pairs of 4-trees with 11 er less vertices.
In the case of 4-trees with 12 vertices, there are six pairs of J-equivalent
nonisomorphic graphs.l® Taking into account that the first degeneracy
for VTI-1 appears for a 4-tree with six vertices, representing 2-Me-pentane,
we can conclude that a TI defined using VTT-15, whose first degeneracy
appears for 4-trees with ten vertices, will be a more discriminating index.
Work is in progress in this direction.
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