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ABSTRACT

The maximum path matrix of a molecular graph
and derived vertex and molecular graph theoretical
invariants are defined, and their relation with

previously defined graph invariants is discussed.

1. INTRODUCTION

%

Chemical graph theory” 5 is usually applied to the
araphical representation of chemical structures (molecules)
whose atoms are depicted by points (vertices) while the
chemical bonds are represented by lines (edges) connecting
the points. Commonly, hydrogen atoms arve ignored, and the

resulting hydrogen-suppressed graph is used.
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The bond lengths, bond angles, and stercolsomerism are
not taken into account in the graph representation of
chemical structures, and the adijacency of atoms, i.e. the
constitution of the molecule, is regarded as being their most
important topological feature.

from a practical point of view, a convenient way of
expressing the topology of a chemical structure is repre-
sented by a significant class of garaph invariants, usually
referred to as topclogical indices.6_8 A lopological index is
a number that 1s computed by a mathematical algorithm from
the constitutional graph of a molecule. Since isomorphic
graphs possess identical values for any given topological
index, these indices are referred to as graph tnvariants.
They do not characterize graphs up to isomorphism.
Topological indices usually reflect both molecular size and
shapae.

A few useful graph theoretical definitions will be
introduced. A graph G is an ordered pair consisting of two
sets UV = Y(G) and E = E(G). Elements of the set VU(G) are
called vertices and elements of the set E(G), involving a
binary relation (adjacency) betuween the vertices, are called
edges. The number of elements of the set V(G) is denoted by
N, the number of wvertices in the molecular graph. Two
vertices v, and vj of a graph G are said to be adjacent if
there is an edge joining them; the vertices v, and vj { edge
endpoints) are then said to be {incident to such an edge.
Similarly, two distinct edges of G are adjacent if they have
at least one vertex in common.

A walk in a graph is a sequence of edges, starting from
any vertex and ending on any vertex, with the property that

the ending vertex of the jth edge in the sequence is the
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beginning of the ( j+1)h edge. A walk is called a path if aill
the wvertices (and thus necessarily all the edgez) are
distinct .

The length of the shortest path which connects two

vertices Ui and Uj in a graph G is denoted by dtj and is
called the topological distance (or the distance) between
these two vertices; of course, dii = 00, The distances
dij = (D)ij represent the elements of the distance matrix

D = D(G) of the agraph G.

We consider the molecular graph to be arbitrarily
numbered from 1 to N, where N is the number aof vertices.
Although the distance matrix is not invariant to different
numberings of the molecular graph, the var ious araph
theoretic invariants which will be used or defined in this
paper will exhibit constant wvalues for all N! possible
numberings of the vertices in the molecular graph.

The distance sum9’10 of the vertex vi of the graph G,
denoted by DS(G,t), is defined as the sum of the topological
distances between vertex v, and every vertex in the molecular
graph, i.e. the sum over row { or column © in D(G).

N
DS(G,t) = (D)L'j
11-13 =1

Wiener has introduced in his studies on additive
physical parameters of molecules the topological index W that
is equal to the half-sum of the elements of the distance
matrix D. The Wiener index may be expressed also as the
half-sum of the distance sums of the molecular graph:

N N N

DS(G,t)

L ] [

1
N:;:‘- (D).Aj
< 1]

i=1 j=1 i=1
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The Wienery index is widely used in devising correlations
hetween the chemical structure and wvarious physico-chemical
properties of classes of substances. A number of wvariations
of the Wiener index were defined, e.g. on the basis of

r

. ) 14
information theory or as expanded Wiener number. Ihe

applications of the distance matrix and of the Wiener index

. i7
were recently reviewed.

2. DEFINITION OF PATH MATRICES

The length of the longest path connecting two vertices
v, and v, is called the elongation between the two
vertices-lé’IQ'

We define the maximum path matrix of a graph G with N
vertices, MP(G) = MP, the sguare NxN symmetrical matrix,
whose entries, (Hp)ij , are equal to the elongation between
the two vertices v, and vj. All the elements of type ”pii(G)
are, by definition, zero. Thus, all the entries of the
maximum path matrix are integers.

if ¢t 2 j, length of the elongation
(”p)ij = between vertices v, and vj
if 1 = ), O

As an example, the maximum path matrix of the molecular
graph of 1-ethyl-2-methylcyclopropane (graph G4 in Figure 1)
is given below. This molecular graph is the smallest identity
monocyclic graph, because it is the smallest monocyclic graph

with no two topologically equivalent vertices. hence it has

the identity operation as the only symmetry element.
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0o 2 2 1t 2 3
2 0 2 3 4 1
> 2 0 3 4 3
MP(GY =11 3 3 0 1 4
© 4 4 1 0 5
3 1 3 4 5 0

The maximun/minimuwnr path matrix of a graph G with N
vertices, MmP(G) = MmMP, is a square NxN nonsymmetrical

matrix, whose entries, (Hmp)ij , are defined as:

if v > 5, length of the longest path (elongation)
between vertices Ui and Uj
(MmP ), , = 4 if v = j, O
i}
if ¥ ¢ j, length of the shortest path (distance)

between vertices vi and vj
\

From the definition of the MmP matrix we easily observe
that the upper triangle of the matrix is identical with the
one of the maximum path matrix, while the lower triangle of
the matrix coincides with the lower triangle of the distance
matrix.

As example, the maximum/minimum path matrix of the graph

64 is given bhelow.

o 2 2 1 2 3

1 0 2 3 4 1

1 1 0 3 4 3
MP(G) = 1y 2 2 0 1 a

2 3 3 1 0 5

> 1 2 3 4 0O

te have tio note Lhat both the maximum path matrix andthe

maximum/minimum path matrix are i1dentical to the distance
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matrix for all acyclic molecular graphs.

3. VERTEX THEORETICAL INVARIANTS BASED ON PATH MATRICES

The maximum path sum of the vertex v, of the graph G,
denoted by MPVUS(G.t), is defined as the sum of the length of
the longest path between vertex Ui and every wvertex in the

molecular aeraph, i.e. the sum over vyow U or column I in

MP(G).

MPVUS(G,1) = (”p)ij
J=1

The maximum/mintmun path sum of the vertex v, of the
graph G, denoted by MmPUS({G,t), is defined as the sum of the
length of the longest and shortest paths between vertex t and
every vertex in the molecular graph, i.e. the sum over row <@
and column ¢ in MmP(G), or, alternatively, the sum of the
distance sum and maximum path sum of the vertex v

N N
MMPUS(G,L) = (Mmp)ij. + (Mmp)ﬁ = DS(G,L) + MPUS(G,1)

J=1 J=1

Table 1 presents the MPUS, DS and MmPUS for the six
cyclic graphs in Figure 1. There exist molecular graphs with
topologically inequivalent wvertices exhibiting ident ical
local vertex invariants. Such a degeneracy appears for Gl’
where MDUS(Gl,a) = HPUS(GI,4), but DS(GI,B) # DS(Gl,d), and
MmPUS(Gl,B) # MmPUS(Gl,A). DS presents also degenerate values
for G4,where HPUS(Gd,B) x HPvS(84,4), but DS(G4,3) = 05(64,4)

and HmPUS(G4,3) # HmPUS(G4,4).
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Fig. 1. Molecular graphs of the six 3-membered
cycloalkanes used in computing the graph-theo-

retical invariants presented in Table 1.
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Table 1. Vertex theoretical indices and topological

tndio:s

ot alkyl-substituted cyelopropanes depicted in Figure 1.

G
3

P

Vertex label

1 oy 3 4 5
1,1,3-Trimethyl-cyclopropane
MPUS Q 11 13 13 13
DS & 7/ 3 10 10

MmPUS 15 i8 21 o3 23

1,7,3-Trimethyl-cyclopropane
MPUS 11 11 11 15 15
0s 7 7 7 11 11

MmPYUS i8 18 18 26 26

1-Ethyl-1-methyl-cyclopropane
MPUS B 14 14 10 14
DS 6 9 9 8 12

MmPUVS 14 23 23 18 26

1-Ethyl—2-methyl-cyclopropane
MPUVS 10 12 14 12 14
Ds 7 8 I 2 13

MMPUS 17 20 23 21 29

Propyl-cyclopropane
MPVS 10 16 146 10 12
DS 8 11 11 B 10

MmPVS 18 27 27 18 22

Isopropyl -cyclopropane
MPUS < 15 15 9 13
DS 7 10 10 7 11

MmPVS 16 25 25 16 24

15
11

16
14

30

13
11

W

29

31

MPS MmP%S

37

37

36

40

40

37

63

fa¥o)

&3

69

71
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Let nij be the number of vertices in the molecular araph
G situated at the maximum path of length j from the vertex
Ui; then the sequence (niO' nil’ niE' .. e nih) ig called the
maximum path degree seguence of the veriex v in G, and Kk
represents the length of the longest path in G; note that
niO = 1. The maximum path degree sequence of the vertex v, imn
the graph G is denoted by MPDS(G,i).

The maximum path deagree sequence of vertex 1 in graph 64
is given below:

HPDS(G4,1) = (1, 1, 3, 1, 0, 0)

Let my be the number of maximum paths of length ¢ in the
molecular graph G; then the sequence (mo, mes Mos oo mh) is
called the maximum path freguency seguence, and k represents
the length of the longest path (maximum elonoation) in G;
note that my = N, the number of vertices in G. The maximum
path frequency sequence of the graph G is denoted by MPFS(G).

The maximum path frequency sequence aof the graph G, is:

4
MPFS(G4) ={(646, 3, 4, 4, 3, 1)

4. GRAPH THEORETICAL INVARIANTS BASED ON PATH MATRICES

By analogy with the Wiener index, we define the MPS
topological index as the sum of the number of bonds on the
longest path between any two vertices in the molecular graph,
i.e. the half-sum of the elements of the maximum path matrix
MP, or the half-sum of the maximum path sums MPVS of the

molecular graph:
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MPUS(G, 1)

J|—
F2{ b=

MPS(G) =

r.

(Mp)ij =

i=1 j=—1 =1

The MmPS topological index is detined as the sum of the
longest and shortest path between any two vertices in the
molecular graph, i.e. the sum of the elements ot the maximum/
minumum path matrix MmP, or the sum of the maximum/minimum
path sums MmPVUS of the molecular graprh, or, equally well, the
sum of the Wiener index and MPS topaological index of the
molecular graph:

M N N

MMPUS(G,1) = WG} + MPS(G)

Jf
haj

MmPS( G ) = (MmP) . . =
Lj

r

=1 Jj=1 i=1
We have to note that if G is an acyclic graph, then
MPS(G) = MmPS( G )/2 = W(G)

The topological indices W, MPS, and MmPS of the six
cyclic graphs in Figure 1 are presented in Table 1. As is
apparent from the Table 1, some degenerate values for indices
W and MPS appear, but when they are considered together in
MmPS, they give different numerical values. For example,
H(GE) = N(GB), MPS(GEJ = MPS(GB), and MmPS(GE) * MmDS(Ga). I
another example, N(G4) = N(GS), MPS(G4) = MPS(GS), and
MmPS(G4) x HmPS(GS). However, the reverse situation may
appear, when both W and MPS indices are different for two
graphs, but HMmPS has identical values: N(Gl) x N(GB),
NPS(GI) # HPS(GE). and MmPS( GI) = MmPS( GB).

Since both the local vertex invariants and the resulting
topological indices are integers, these belong to the

™

so-called "first generation" topological indices.”
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5. CONCLUSIONS

Two molecular graph matrices were defined, namely the
maximum path matrix and the maximum/minimum path matvix.
Based on the path matrices, several vertex invariants and
topological indices were defined, showing interesting
properties when compared with graph invariants based on the

distance matrix.
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