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Topological indices represent an important class of structural descriptors, widely used in modeling physical,
chemical, or biological properties, in similarity and diversity assessment, database mining, and in the virtual
screening of combinatorial libraries. Recently, the distance matrix was used as the source of a new family of
molecular matrices, the distance-valency matrices. The definition of the distance-valency matrix is extended to
vertex- and edge-weighted molecular graphs. Using five new approaches for the calculation of atom and bond
parameters in weighted molecular graphs, topological indices derived from various distance-valency matrices
are applied in QSPR models for the amines boiling temperatures. The topological indices are computed with the
Wiener, hyper-Wiener, and graph spectra operators. The best QSPR models contain only structural descriptors
representing the minimum, MinSp, or maximum, MaxSp, eigenvalue for the following molecular matrices:
A, D, RD, Dval(-1,1,1), Dval(-2,1,1), Dval(-2,0,0).

INTRODUCTION

A large number of topological indices, geometric, and quantum descriptors are used in model-
ing physical, chemical, or biological properties, in similarity and diversity assessment, database min-
ing, and in the virtual screening of combinatorial libraries. A significant fraction of the topological
indices used in quantitative structure-property relationship (QSPR) and quantitative structure-activity
relationship (QSAR) models are derived from molecular graphs. Molecular graphs are non-directed
chemical graphs that represent, in different conventions, molecules. In molecular graphs vertices corres-
pond to atoms and edges represent covalent bonds between atoms, while geometrical features of mole-
cules, such as bond lengths or bond angles, are not considered. Using molecular graphs the chemical
structure of a chemical compound can be expressed by means of various graph matrices, polynomials,
spectra, spectral moments, sequences counting distances, paths, and walks, or topological indices. A
topological index (TI) is a numerical descriptor of the molecular structure based on certain topological
feature of the molecular graph. Numerous reviews?!3 were published on the theory and applications of
topological indices in QSPR and QSAR models.

The distance-valency atomic descriptors VTI!4 were used to define a new class of matrices, the
distance-valency matrices Dval.!® These new matrices are very flexible in representing the chemical
structure in a numerical form suitable for an efficient use in structure-property, structure-activity and
molecular similarity studies. We have to mention that the previously defined distance and reciprocal
distance graph matrices are particular cases of the distance-valency matrices. In the present paper the
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definition of the distance-valency matrix is extended to vertex- and edge-weighted molecular graphs.
The atom and bond parameters for heteroatom-containing organic compounds, represented as vertex-
and edge-weighted molecular graphs, are computed with five new weighting schemes.'® The first two
weighting schemes compute the atom and bond weights on the basis of relative atomic mass, using car-
bon as standard. The remaining three systems use the relative atom polarizability, radius, and elec-
tronegativity to compute atom and bond weights, again with the carbon atom as standard. We have to
mention that the definition introduced here is general, and other weighting schemes can be used to
compute the vertex and edge weights.!”-2! Using these five weighting schemes, a large number of topo-
logical indices derived from various distance-valency matrices are used to develop QSPR models for
the amines boiling temperatures. The topological indices are computed with the Wiener, hyper-Wiener,
and graph spectra operators. The best QSPR models contain only structural descriptors representing the
minimum, MinSp, or maximum, MaxSp, eigenvalue for the following molecular matrices: A, D, RD,

Dval(-1,1,1), Dval(-2,1,1), Dval(-2,0,0).

VALENCY OF ATOMS IN MOLECULAR GRAPHS

In this paper chemical structures are represented as molecular graphs. By removing all hydro-
gen atoms from the chemical formula of a compound containing covalent bonds one obtains the hydro-
gen-depleted (or hydrogen-suppressed) molecular graph of that compound, whose vertices correspond
to non-hydrogen atoms and whose edges correspond to covalent bonds. A graph G = G(V,E) is an
ordered pair consisting of two sets ¥ = J(G) and £ = E(G). Elements of the set (G) are called vertices
and elements of the set £(G), involving the binary relation between the vertices, are called edges. The
number of vertices N represents the number of elements in ¥(G), N = [V(G)], and the number of edges
M represents the number of elements in E(G), M = |E(G)|. The graph vertices are labeled from | to N,
V(G)= {v,, Vp ..» Va}, and the edge connecting vertices v, and v is denoted by ¢ Two vertices v; and v,
of a graph G are said to be adjacent if there is an edge ¢, joining them. The degree of the vertex v, from
the molecular graph G, denoted by deg, = deg(G),, is equal to the number of vertices adjacent to vertex v,.

A generalization of the distance sum DS vertex invariant was proposed by introducing the dis-
tance-degree VTI descriptors.’* These vertex (atomic) descriptors can be obtained also from the dis-
tance-valency matrices.!® The valency of the vertex v,, val(w), = val(w,G),, is defined as the sum of the
weights Ew(w), of all edges ¢; incident with vertex v;:

val(w), = ) Ew(w), )

; €E(G)

where w is the weighting scheme used to compute the bond parameters £w. Alternatively, the valency
of the vertex v, can be computed as the sum of the non-diagonal elements in the row i, or column /, of
the adjacency matrix A(w) = A(w,G), of a molecular graph G with N vertices:

val(w), = 3 [A(w)), = 2 [AMW)],. )

j=l J#l

The set of valency values for all vertices in a graph forms the vector Val = Val(G) whose ith
element represents the valency of the vertex v,. In alkanes and cycloalkanes the degree of a vertex v,
deg,, is identical with the valency of that vertex, val, while for molecules containing heteroatoms
and/or multiple bonds, represented as vertex- and/or edge-weighted molecular graphs, this equality is

not true.
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THE DISTANCE-VALENCY MATRIX

The distance-valency matrix of a simple (non-weighted) graph G with N vertices, Dval(p,q.r) =
= Dval(p,q,,G), is a square NxN matrix, whose entries [Dval(p,q,r)]; are equal to:!?

d/valival| if i=j
0 if i=j

[Dval(p,q,r)], ={ 3)

where d is the graph distance between vertices v, and Vi and val, is the valency of vertex v,. If the para-
meters p, g, r are natural numbers then the Dval matrnx has elements natural numbers. In the particular
case when p = 1 and ¢ = r = 0 the Dval(p,q,r) matrix is identical with the distance matrix D. If the para-
meters p, g, r are not natural numbers then one can obtain Dval matrices with elements real numbers. It
p=~1and g = r =0 then Dval(~1,0,0) is identical with the reciprocal distance matrix RD.?*"?* From
the definition of the Dval matrix it is clear that nonsymmetric matrices can be obtamned if g # r. The
computation of the distance-valency matrix is presented for the molecular graph of 2-methylhexane 1.

The distance matrix D(1) of 2-methylhexane 1, identical with the distance-valency matrix
Dval(1,0,0,1), is:

Dval(1,0,0,1) = D(1)
1 2 3 4 5 6 7
1[0 1 2 3 4 5 2
211 01 2 3 41
312101 2 3 2
413 2101 2 3
5/4 32101 4
6(5 4 3 2105
712 1 2 3 450

The valency Val vector, identical with the degree Deg vector, is Val(1) = {1,3,2,2,2, 1, 1}
With the above distance matrix and valency vector one can compute the Dval(1,1,1,1) matrix:

Dval(1,1,1,1)
1 23 45 6 7
10 3 46 8 5 2
213 0 6 1218 12 3
3/4 6 048 6 4
416 124 0 4 4 6
5{8 188 4 0 2 8
615126 4 2 0 5
7{2 3 4 6 8 5 0

As an example we present the computation of the element Dval(l,1,1,1),

Dval(1,1,1,1), = [D(1)], cval(1),val(1), = 4-3-1 = 12,



590 Ovidiu Ivanciuc

When at least one of the three parameters p, g, r is lower than zero one obtains distance-valency
matrices with elements real numbers. If ¢ = r the Dval matrix is symmetric. Consider the
Dval(1,-1,~1,1) matrix of 2-methylhexane 1:

Dval(1,-1,~-1,1)

1 2 3 4 S 6 7
0.000 0333 1.000 1.500 2.000 5.000 2.000
0.333 0.000 0.167 0.333 0.500 1.333 0333
1.000 0.167 0.000 0.250 0.500 1.500 1.000
1.500 0.333 0.250 0.000 0.250 1.000 1.500
2.000 0500 0.500 0250 0.000 0.500 2.000
5000 1.333 1.500 1.000 0.500 0.000 5.000
2.000 0.333 1.000 1.500 2.000 5.000 0Q.000

NN D W N e

The distance-valency matrices Dval(p,q,r) represent a rich family of matrices that display
interesting properties. Using combinations of the three parameters p, ¢, r one can obtain both symme-
tric and nonsymmetric molecular matrices with elements integer or real numbers. We have to mention
here that the computation of structural descriptors from nonsymmetric matrices requires the definition
of new equations for certain graph invariants.

THE DISTANCE-VALENCY MATRIX FOR WEIGHTED GRAPHS

Using graph theory, an organic compound containing heteroatoms and/or muitiple bonds can
be represented as a vertex- and edge-weighted molecular graph. A vertex- and edge-weighted (VEW)
molecular graph G = G(V,E,Sy,Bo,Vw,Ew,w) consists of a vertex set V= 1(G), an edge set E = E(G), a
set of chemical symbols of the vertices Sy = S{G), a set of topological bond orders of the edges Bo = Bo(G),
a vertex weight set Vw(w) = Vw(w,G), and an edge weight set Ew(w) = Ew(G). The elements of the ver-
tex and edge weight sets are computed with the weighting scheme w. Usually, hydrogen atoms are not
considered in the molecular graph, and in a VEW graph the weight of a vertex corresponding to a carbon
atom is 0, while the weight of an edge corresponding to a carbon-carbon single bond is 1.

In a weighting scheme w the vertex ¥w and edge Ew parameters are computed from a property
p, associated with every vertex v, from G, v, € W(G), and the topological bond order Bo of all edges
from the molecular graph. The vertex parameter Vw(w), for the vertex v, is:

Yw(w), =1 -p./p, 4)
and the edge parameter Ew(w),; for the edge between vertices v, and v, is:
Ew(w)‘.j =p(,pC/Bo,.jp‘.pj (5

where p, is the atomic property of vertex v,, p; is the atomic property of vertex v, and p. is the atomic
property for carbon atom. Several welghtmg schemes can be obtained when p represents different
atomic properties:!6 4, when p is the atomic mass; P, when p is the atomic polarizability; E, when p is

the atomic electronegativity; R, when p is the atomic radius.
The AH weighting scheme!® uses the following equation to define the vertex parameter

Vw(AH), for the non-hydrogen atom i:

Vw(AH), = 1 — A (A, + NoHA,) = 1 = 12.011/(4; + 1.0079NoH,). (6)
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The edge parameter Ew(AH); for the bond between atoms i andj is defined with the equation:

Ew(AH), = AcAJBo (A, + NoHANA, + NoHAy) =
(7
= 12.011°12.011/Bo (4, + 1.0079NoH )4, + 1.0079NoH))

where 4. = 12.011 is the atomic mass for carbon, A4;; = 1.0079 is the atomic mass for hydrogen, NoH, is
the number of hydrogen atoms bonded to the heavy atom i, and NoH, is the number of hydrogen atoms
bonded to the heavy atom ;. The above five weighting schemes are used in this study to compute struc-

tural descriptors.
The distance-valency matrix of a vertex- and edge-weighted graph G with N vertices,

Dval(p,q,r,w) = Dval(p,q,;,w,G), is a square NxN matrix, whose entries [Dval(p,q.r,w)), are equal to:

d(w)!? val(w)! val(w), if i# ]
Pw(w), val(w){™" ifi=j

[Dval(p’q’r’w)].j ={ ()

where Vw(w), is the weight of vertex v, d(w),, is the graph distance between vertices v, and v, val(w), is
the valency of vertex v,, and val(w)j is the va{ency of vertex v, all computed with the weighting scheme
w. The definition of the Dval matrix for weighted graphs was formulated in analogy with the defini-
tions for the distance and reciprocal distance matrices, respectively, with Dval( 1,0,0,w,G) = D(w,G),
and Dval(-1,0,0,w,G) = RD(w,G).

An example of the computation of the Dval matrices for weighted graphs is presented for n-
propylamine 2 that has the molecular graph 3.

CH, CH; 1_N3
N cHy N
2 3

The distance matrix D(4,3) computed with the atomic polarizability weighting scheme P is:

Dval(1,0,0,7,3) = D(P,3)
1 2 3 4
~0.600 1.600 2.600 3.600
1.600 0.000 1.000 2.000
2.600 1.000 0.000 1.000
3.600 2.000 1.000 0.000

H W -

From the elements of the above distance matrix one can easily compute the Dval(-2,1,1,P,3)
matrix:

Dval(-2,1,1,7.3)
1 2 3 4
-1.536 1.625 0473 0.123
1625 0000 5200 0.650
0.473 5.200 0.000 2.000
0.123 0.650 2.000 0.000

P S

The second example of Dval matrices for weighted graphs is presented for N-methylethyl-
amine 4 that has the molecular graph 5.

2 4
NH CH, 1 N3
CH; P ~ CHz/ / \/
4

5
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From the molecular graph § one can easily obtain the Dval(-2,0,0,4,5) matrix, computed with
the atomic mass weighting scheme A:

Dval(=2,0,0,4,5)

1 2 3 4

1 10.000 1360 0340 0136
2 {1360 0143 1360 0290
3 {0340 1.360 0.000 1.000
4 |0.136 0.290 1.000 0.000

Another distance-valency matrix computed for the molecular graph § is presented below:

Dval(-1,1,1.4,5)
1 2 3 4
0.000 1.635 0.909 0310
1.635 0488 3.635 0.899
0.909 3.635 0.000 1.817
4 |0310 0899 1817 0.000

“w ) —

In the following sections the distance-valency matrices of vertex- and edge-weighted molecu-
lar graphs will be used to compute a large number of topological indices. Several QSPR models for the
amines boiling temperatures will be developed with these structural descriptors.

STRUCTURAL DESCRIPTORS DERIVED FROM MOLECULAR GRAPHS

There exist many molecular graph descriptors, and the development of new molecular matrices
and weighting schemes can multiply their number. This problem can be solved by using operators to denote
all topological indices that can be computed with the same mathematical operation. An operator can be
used to compute a family of topological indices by applying a certain mathematical operation or algo-
rithm to a molecular matrix M calculated with a weighting scheme w from the molecular graph G. In
the present paper we use families of related molecular graph descriptors computed with graph operators.

The Wiener operator, Wi(M,w,G), is defined by analogy with the Wiener index:

N N
Wi(M,w,G) =) " [M(w)], (9)
i=l =i
where M represents the molecular matrix of G, and w is the weighting scheme. If M is the distance
matrix, the operator gives the Wiener index W,2526 while if M is the reciprocal distance matrix, this
operator is identical with the Harary index.?>2* The Wiener operator applied to the molecular matrices
previously presented in this paper gives the following topological indices:

Wi(Dval(1,0,0),1) = 52 Wi(Dval(1,1,1),1) = 130
Wi(Dval(1,-1,~1),1) = 28 Wi(Dval(1,0,0),P,3) = 11.200
Wi(Dval(=2,1,1),P,3) = 8.536 Wi(Dval(-2,0,0),4,5) = 4.628

Wi(Dval(-1,1,1),4,5) = 9.693

By analogy with the hyper-Wiener index!3?732 we define the Hyper-Wiener operator
HyWi(M,G) of a graph G with N vertices:

HyWI(M, %,G) =~ Y ((M(w)]; +[M(w)],) (10)

i=l j=i
where M represents the molecular matrix of G, and w is the weighting scheme. If M is the distance
matrix, the HyWIi operator is identical with the hyper-Wiener index WW.
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The spectrum operator Sp(M,w,G) = {x,, i = 1, 2, ..., N} represents the eigenvalues of the
matrix M(w) = M(w,G), or the roots of the characteristic polynomial Ch(M,w,G,x), Ch(M,w,Gx) = 0
The MinSp(M,w,G) and MaxSp(M,w,G) operators are equal to the minimum and maximum values of
Sp(M,w,G), respectively: The two molecular spectra operators MinSp and MaxSp were used with suc-
cess to compute the boiling temperatures of acyclic compounds containing oxygen or sulfur atoms.?!
The indices MinSp and MaxSp derived from the D, D, and RD, matrices were used to model the

boiling temperatures, heat of vaporization, molar refractlon molar volume, critical pressure, critical

temperature, and surface tension of alkanes.2*32

MODELING THE AMINE BOILING TEMPERATURES

Several structural descriptors computed from distance-valency matrices were tested in a QSPR
study that models the boiling temperatures of a set of 33 amines. The structure of the amines and their
experimental boiling temperatures®® are presented in Table 1. Five weighting schemes w were used,

Table 1

Amines, structural descriptors, and experimental boiling temperatures (t,) used in the QSPR study

Amine MinSp(D,E) MaxSp(RD,AH) MinSp(Dval(-2,0,0),A) t, (K)
methylamine -0.7311 1.8958 -1.2906 266.8
ethylamine -1.7483 2.7388 ~1.5137 289.7
isopropylamine —2.0000 3.3613 —~1.6819 305.6
zert-butylamine —2.0000 3.8184 -1.8180 317.6
n-propylamine -3.1994 3.3723 -1.5821 3216
sec-butylamine ~3.7867 3.9049 -1.7242 336.1
isobutylamine -3.6010 3.8981 ~1.6708 340.9
n-butylamine -5.0517 3.8874 -1.6102 350.6
2-methylbutylamine -5.0562 43717 -1.6996 368.7
n-pentylamine -7.3037 4.3225 -1.6246 377.6
cyclopentylamine -3.9453 4.7234 —-1.7506 380.2
n-hexylamine —9.9564 4.6993 -1.6326 404.6
cyclohexylamine —5.5380 5.1396 ~1.7807 407.6
2-aminoheptane -11.9393 5.0664 -1.7419 416.2
n-heptylamine -13.0108 5.0316 -1.6375 428.2
n-octylamine -16.4679 5.3287 ~1.6407 452.8
n-nonylamine -20.3282 5.5973 ~-1.6428 475.4
n-decylamine ~24.5921 5.8423 -1.6443 493.7
n-dodecylamine -34.3324 6.2759 -1.6461 532.4
dimethylamine —-1.6346 2.8392 —1.6846 280.0
diethylamine ~4.5509 3.9971 ~1.8317 328.6
diisopropylamine -6.3924 4.8677 -1.9528 3571
N-methylbutylamine ~7.0060 4.3968 -1.7961 3642
N-tert-butylisopropylamine -7.1616 5.2009 -2.0123 371.2
N-ethylbutylamine -9.2905 4.7949 —1.8480 381.2
di-n-propylamine ~-9.1077 48054 -1.8561 382.0
N-methylhexylamine -12.7407 5.0868 —1.7984 414.2
N-methylcyclohexylamine  —7.5980 5.545S ~1.9034 422.2
diamylamine ~23.0972 5.9355 ~1.8633 476.1
trimethylamine -1.6346 3.5416 -1.9596 2760
tripropylamine -9.1077 6.0014 -2.0889 429.7
tri-n-butylamine -15.2908 6.7575 -2.0910 487.2

triamylamine -23.0972 7.3631 -2.0912 516.2
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namely P, E, R, A, and AH.'® The list of the 204 structural descriptors used in the QSPR study is pre-
sented below:

(1) constitutional descriptors: the number of hydrogen atoms attached to the nitrogen atom,
NoHN, and the molecular weight, MW;

(2) the Kier and Hall connectivity indices: AR AR 3;(_;, 2

(3) indices representing the minimum (MinSp) and maximum (MaxSp) value of the mole-
cular graph spectra: MinSp(A,w), MaxSp(A,w), MinSp(D,w), MaxSp(D,w), MinSp(RD,w),
MaxSp(RD,w), MinSp(Dval(1,1,1),w), MaxSp(Dval(l,1,1),w), MinSp(Dval(—‘l, 1,1),w),
MaxSp(Dval(-1,1,1),w), MinSp(Dval(1,-1,-1),w), MaxSp(Dval(1.-1,~1),w), MinSp(Dval(-1,-1,-1),w),
MaxSp(Dval(-1,~1,~1),w), MinSp(Dval(-2,1,1),w), MaxSp(Dval(-2,1,1),w), MinSp(Dval(-2,-1,-1),w),
MaxSp(Dval(-2,~1,~1),w), MinSp(Dval(-2,0,0),w), MaxSp(Dval(-2,0,0),w);

(4) topological indices obtained from the Wiener operator applied to a set of molecular graph
matrices: Wi(D,w), Wi(RD,w), Wi(Dval(1,1,1),w), Wi(Dval(-1,1,1),w), Wi(Dval(1,-1,~1),w),
Wi(Dval(-1,-1,-1),w), Wi(Dval(-2,1,1),w), Wi(Dval(-2,-1,-1),w), Wi(Dval(--2,0,0),w),

(5) topological indices obtained from the Hyper-Wiener operator applied to a set of molecular
graph matrices: HyWi(A,w), HyWi(D.w), HyWI(RD,w), HyWi(Dval(1,1,1),w), HyWi(Dval(-L,1,1),w),
HyWi(Dval(l,~1,~1),w), HyWi(Dval(-1,-1,-1),w), HyWi(Dval(-2,1,1),w), HyWi(Dval(-2,~1,--1),w),
HyWi(Dval(-2,0,0),w).

All studies that develop QSPR models from a large set of computed descriptors use a wide
range of algorithms for selecting significant descriptors. Because the exhaustive test of all MLR equa-
tions requires too large computational resources, we have used a heuristic method for descriptor selec-
tion. This heuristic algorithm starts from the set of 204 structural descriptors and develops QSPR mod-
els by applying the following steps:

(1) All one-parameter correlation equations are computed and all descriptors with a correlation
coefficient greater than a threshold, [, | > 0.15, are selected for further use.

(2) Biparametric regression equations are computed with all possible pairs of descriptors
selected in step (1) that are not significantly correlated. Two descriptors are considered to be not signi-
ficantly correlated if their intercorrelation coefficient r,; is lower than a threshold, "]_‘,” < 0.8. The most
significant 30 pairs of molecular descriptors were used in the third step.

(3) To a MLR model containing n descriptors a new descriptor is added to generate a model
with n + 1 descriptors if the new descriptor is not significantly correlated with the previous » descriptors.

(4) The most significant 30 MLR models containing n + 1 descriptors are selected.

Steps (3) and (4) are repeated until MLR models with a certain maximum number of descrip-
tors are obtained.

The best MLR equations with two independent variables for the computation of the boiling
temperatures of amines are reported in Table 2, equations 1-10. Similarly, in Table 3 we present the
best QSPR models with three independent variables. By increasing the number of independent vari-
ables to four or more the correlation coefficients does not significantly increase and the F test decreas-
es, indicating that such equations do not improve the QSPR model.

The best QSPR model is represented by equation (11) from Table 3, with r = 0998, s+ = 4.68,
and F = 2443; the values of the three topological indices involved in this equation, namely
MinSp(D,E), MaxSp(RD,4H), and MinSp(Dval(-2,0,0),4), are presented in Table [. An inspection of
the equations from Tables 2 and 3 reveals an unexpected finding: all structural descriptors selected in
equations (1-20) are derived only from the MinSp and MaxSp operators, representing the minimum
and maximum values of matrix spectra. Although a large fraction of the structural descriptors are
obtained from the Wi and HyWi operators, no such indices were included in the QSPR models. Also,
the molecular connectivity descriptors are absent in the reported models. It is clear that the MinSp and
MaxSp descriptors outperform the connectivity, Wi and HyWi descriptors in modeling the amines
boiling temperatures. Topological indices computed with these two spectral operators were used with
success to compute the boiling temperatures of acyclic compounds containing oxygen or sulfur

34,350
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Table 2

Coefficients, structural descriptors, and statistical indices for the best MLR equations with two independent

variables for the computation of the boiling temperatures of the 33 amines from Table 1.

The MLR equations have the general form: t, = a, + @,8D, + a,8D,

Eq. Qg a; / SDy a:/ SD; r S F

1 261.66 -102.38 73.83 0.997 597 2251
MaxSp(AP) MaxSp(RD AH)

2 558.49 369.21 75.47 0.996 6.47 1916
MinSp(RD.,E) MaxSp(RD . AH)

3 348,71 72.13 170.25 0.996 6.83 1718
MaxSp(RD AH) MinSp(Dval(-2,0,0),4)

4 321.82 15273 79.16 0.994 7.90 1277
MinSp(A R) MaxSp(RD AH)

5 588.03 404.49 77.67 0.992 9.07 966
MinSp(RD .A) MaxSp(RD AH)

6 307.78 68.87 130.96 0.992 9.43 893
MaxSp(RDAH) MinSp(Dval(-2,0,0),E)

7 179.11 102.22 16.63 0.992 9.46 887
MaxSp(RD,R) MinSp(Dvai(-2,1,1),4)

8 177.53 101.99 16.23 0.991 9.60 862
MaxSp(RD,R) MinSp(Dval(-2,1,1),E)

9 178.70 94.58 21.37 0.991 991 807
MasSp(RD,R) MinSp(Dval(-1,1,1)AH)

10 360.82 -165.33 109.14 0.990 10.13 771
MaxSp(A.P) MaxSp(RD,E)

atoms,2! and to model the boiling temperatures, heat of vaporization, molar refraction, molar volume,
critical pressure, critical temperature, and surface tension of alkanes,?*32 demonstrating their utility in
structure-property studies. In order to obtain a definite conclusion, this finding must be tested in other
QSPR and QSAR models.

Table 3

Coefficients, structural descriptors, and statistical indices for the best MLR equations with three independent variables
for the computation of the boiling temperatures of the 33 amines from Table 1.
The MLR equations have the general form: t, = a, + a,SD, + a,8D, + a,SD,

Eq. do ay/ SD| ax/ SDz a3 / SD» r s F

11 323.72 -1.41 61.24 134.71 0.998 4.68 2443
MinSp(D,.E) MaxSp(RD,AH) MinSp(Dval(-2,0,0),4)

12 324.79 -1.40 61.30 135.51 0.998 4.69 2436
MinSp(D,4) MaxSp(RD AH) MinSp(Dval(-2,0,0).4)

13 255.34 -84.79 -1.12 64.82 0.998 4.71 2415
MaxSp(A.P) MinSp(D.E) MaxSp(RD, AH)

14 255.86 -85.23 -1 64.91 0.998 4.73 2400
MaxSp(A.P) MinSp(D.A) MaxSp(RD AH)

15 244.59 -90.24 76.28 3.13 0.998 4.74 2383
MaxSp(A,P) MaxSp({RD AH) MinSp(Dval(-2,1,1),E)

16 245.76 -90.83 76.24 3.10 0.998 4.75 2341
MaxSp(A.P) MaxSp(RD AH) MinSp(Dval(-2,1,1).4)

17 31572 7564 3.98 145.98 0.998 4.82 2309
MaxSp(RD,AH) MinSp(Dval(-2,1,1),E) MinSp(Dval(-2,0,0),4)

18 317.54 75.63 3.96 147.00 0.998 4.83 2297
MaxSp(RDAH) MinSp(Dval(-2,1,1),4) MinSp(Dval(-2,0,0),4)

19 317.21 75.68 4.39 146.43 0.998 4.97 2166
MaxSp(RD,4H) MinSp(Dval(-2,1,1),4H) MinSp(Dval(-2,0,0),4)

20 317.06 75.10 394 144.87 0.998 5.06 2090

MaxSp(RD,AH)

MinSp(Dval(-2,1,1),R)

MinSp(Dval(-2,0,0),4)
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in

From the large number of molecular matrices that we have used to compute topological
dices, the following six generated the descriptors in equations (1-20): A, D, RD, Dval(-1,1,1),

Dval(-2,1,1), Dval(-2,0,0). The MinSp and MaxSp structural descriptors derived from the distance-
valency matrices are present in eight out of ten QSPR equations with three independent variables from
Table 3. The results obtained in this study clearly demonstrate the utility of the distance-valency matrices

in

computing helpful structural descriptors for QSPR studies.
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