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Splay–density coupling in semiflexible main-chain
nematic polymers with hairpins

Aleksandar Popadić,a Daniel Svenšek, *b Rudolf Podgornik, bcde

Kostas Ch. Daoulas f and Matej Praprotnik ab

A main-chain nematic polymer melt/solution exhibits macroscopic orientational order of main polymer

chains, i.e., a preferred (nematic) direction. It has long been known that in such polymeric liquid crystals

spatial density/concentration variations and distortions of the nematic direction are coupled, obeying a

vectorial continuity constraint whose rigidity increases with chain length. Its vectorial nature precludes

the application to flexible chains, where backfolds (hairpins) are present and apolar nematic symmetry is

manifest, which has been its puzzling feature from the beginning. We now establish a description of the

splay–density coupling in the case of arbitrary backfolding, devising a continuity constraint for the ‘‘recovered’’

polar order of the chain tangents and introducing hairpins as its new type of sources. Performing detailed

Monte Carlo simulations of nematic monodomain melts of ‘‘soft’’ worm-like chains with variable length and

flexibility, we show via their structure factors that the weakening of the coupling due to the backfolding can

be consistently quantified on the macroscopic level.

1 Introduction

Formal description of line liquids1–3 differs fundamentally
from hydrodynamic description of isotropic and ordinary
nematic liquids since the connectivity of the oriented lines
stipulates an additional explicit macroscopic constraint.4,5 This
is true for equilibrium or living main-chain polymers, self-
assembled molecular chains as well as worm-like micelles,
whose consistent description implies a conservation law stemming
directly from their unbroken connectivity. The exact nature and
form of this conservation law proposed independently by de
Gennes and Meyer, received recently a renewed scrutiny6 that
uncovered its deeper structure and important consequences
missed in the previous analysis. In fact, the consequences of this
conservation law trickle all the way down to fundamental macro-
scopic, observable properties such as structure factors and coarse-
grained order parameters7 as in, e.g., the ordered and/or confined
phases of DNA8–11 or technological main-chain polymers like
Kevlar fibres, Vectra and air force polymers.

In this contribution, we address the central issue of taking
into account the backfolding of the polymer chain and system-
atically including its effects in a macroscopic conservation law.
We show how such continuity equation can be articulated and
how it enters the coarse-grained free energy of a nematic polymer
with arbitrary chain backfolding. Specifically, we quantify the
corresponding phenomenological coupling strength.12 By com-
paring detailed simulations based on a recently developed
mesoscopic model13 with the predictions of the coarse-grained
free-energy description augmented by the new conservation law,
we derive an explicit form of the coupling strength that takes
into account the nematic order as well as the density of hairpin
folds.14,15

It has been recognized a while ago1,2,4,5,12,16–20 that the
connectivity of the polymer chain manifests itself on the
macroscopic level as a constraint on the continuum fields
(i.e., order parameter and density/concentration) describing
the coarse-grained polymer configuration. If the preferred
direction is splayed (as e.g. when unfolding a handheld fan)
in a system of long chains, Fig. 1, there are not many chain
ends available to fill the so-generated voids between the chains.
Consequently, the chain density decreases. For the nematic
director field n(r), this constraint was written in form of a
conservation law4

r�(rsn) = r+ � r�, (1)

where rs(r) is the surface density or concentration of polymer
chains perforating the plane perpendicular to n(r) and r+(r) and
r�(r) are volume densities of the beginnings and endings of
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chains acting as sources in this continuity equation for the
‘‘polymer current’’ rsn.

As shown recently within a more formal framework,6 con-
cisely summarized in the Appendix, eqn (1) generalizes to a
rigorous continuity equation for the full order vector a(r),

r�(r‘0a) = r+ � r�, (2)

where r(r) is now the volume number density of arbitrary seg-
ments (e.g. monomers) of length ‘0; with that, rs = r‘0|a|. Eqn (2)
represents a conservation law for the polymer current j = r‘0a,
where it is clear by construction (see the Appendix) that
a(r) = hti is exactly the polar order of polymer chain tangents t.
It moreover follows that eqn (1) is a special case of eqn (2) for
|a| = const. and is therefore of the same, polar type, where n
cannot be anything but a polar(!) preferred direction.

Notwithstanding the inconvenient fact that nematic ordering
is apolar and does not exhibit a polar quantity like a, the
constraint eqn (1) has been readily applied to main-chain
nematic polymers. Usually, the argument that hairpins (sharp,
ideally point-like 1801 turns of the chain) be absent has been
invoked to circumvent the problem of the vanishing order vector
and validate the use of the director n, while it has been at the
same time recognized theoretically12,16,21–23 that hairpins act as
chain ends and their density defines an effective length of the
chains. Moreover, the behavior of macroscopic observables in
recent simulations of polymer nematics13 was consistent with
eqn (1), provided that the influence of hairpins was not significant.
For longer chains with moderate backfolding the constraint
however showed weak, qualitative signs of saturation.

1.1 Recovered polar order

Recently, it has been indicated24 that the vectorial conservation
eqn (2) could be consistently applied to a nematic polymer with
arbitrary number of hairpins or finite-size backfolds by intro-
ducing a so-called ‘‘recovered polar order’’ ar(r)8n(r) of chain
tangents and accompanying additional chain beginnings and
endings of strength �2 corresponding to virtual backfold cuts,
Fig. 2 (left). In brief, let us assign, arbitrarily but globally,
an arrow to the director (this is possible in the absence of
topological disclinations) to get a nematic vector m(r)8n(r).
Wherever a chain gets backfolded with respect to the nematic
director, we make a virtual (imaginary) cut in it, thus creating a

chain ending and beginning that coincide. Now we reverse
those chain segments between the virtual cuts that are opposite
to m, thereby also swapping the identities of the beginnings
and endings of those segments, as in Fig. 2 (left). While physically
there is no change whatsoever, the result of this formal procedure
is a well-defined recovered polar order ar(r)8m(r) of chain tangents
and new virtual beginnings (+2 sources) and endings (�2 sinks),
separated in the directions upstream and downstream with
respect to m. In equilibrium, these new sources still average
to zero, as do the physical beginnings (+1) and endings (�1)
of the chains.

A rigorous conservation law for the recovered polar order
can now be written as

r�(r‘0ar) = Drs�, (3)

where the source Drs� = r+ � r� + 2r2+ � 2r2�, besides
mismatching physical chain ends, now contains also a con-
tribution from mismatching densities r2+ and r2� of up and
down chain backfold virtual cuts. Here we present the first
direct evidence for the relevance of this suggestion, employing
extensive Monte Carlo (MC) simulations of a ‘‘soft’’ model of
worm-like chains (WLCs)13 and tracing the signal of the con-
straint eqn (3) expressed in terms of the recovered polar order
ar. With that, we show that the semiflexibility of the polymer
chain can be consistently taken into account on the macro-
scopic level and hairpins can be rigorously incorporated as
sources in the continuity constraint on the macroscopic fields.

2 Free energy of combined sources

We first present the prerequisites needed for a lean description
of the sources, which brings about a minimum number of
additional parameters and does not introduce any additional
variables. Such first-step asceticism is an intentional convenience
and does not mean that subsequent extensions and refinements
are ruled out.

Fig. 1 Schematics of splay deformation. For long chains (left), the density
decreases as the chains spread out, shorter chains (middle) possess more
ends and can fill the voids more easily. Backfolds (right) also fill the voids,
but reduce orientational ordering unless they are pointlike U turns (hair-
pins), which are favoured in the nematic phase. In this case, they act as
chain ends and can fill the voids similar to the middle picture.

Fig. 2 Left: Pair of virtual cuts at points of folding (t�m = 0) with respect to
a chosen polar direction m8n and subsequent inversion of the backfolded
(t�m o 0) segments introduce a pair of separated +2 source and �2 sink,
while thus-emerging polar order is independent of the folding; t is the unit
tangent on the chain, n is the unit nematic preferred direction and m is a
unit vector chosen arbitrarily in one of the two directions defined by n and
fixed. Middle: Example of a single chain with folds (hairpins), belonging to
the simulated melt (right) with 218 monomers.
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Since in an apolar system there is no distinction between
chain beginnings and endings (�chain ends), we can without
loss of generality consider the deviations of the densities of
both of these chain end types from the equilibrium value

rþ0 ¼ r�0 �
1

2
r�0 to be symmetric,†

rþ � rþ0 ¼ � r� � r�0
� �

� 1

2
Dr�; (4)

r2þ � r2þ0 ¼ � r2� � r2�0
� �

� 1

2
Dr2�; (5)

where an analogous statement, eqn (5), holds for up and down

backfolds with the equilibrium density r2þ0 ¼ r2�0 �
1

2
r2�0 . This

does not imply in any way that the number of backfolds per
chain should be even. It just reflects the symmetry-based facts
that (i) in a homogeneous equilibrium system the number of up
and down backfolds is equal on average, that (ii) the deviations
r2+ � r2+

0 and r2� � r2�
0 from the homogeneous distributions

are equally costly, (iii) that in the source of the continuity
equation, eqn (3), r2+ � r2+

0 is equivalent to �(r2� � r2�
0 )

(excess of up backfolds has the same effect as shortfall of down
backfolds), and (iv) that we will not distinguish between these
two types of sources. As long as Dr2� is much smaller than r2�

0 ,
this distinction plays no role.

Describing the chain ends and the backfold cuts as two types
of free noninteracting particles (two ideal gases), the free-
energy cost of their nonequilibrium distribution is entropic,1

Df Dr�;Dr2�
� �

¼ kBT

2

Dr�ð Þ2

r�0
þ

Dr2�
� �2
r2�0

" #
: (6)

We want to treat both types of particles on an equal basis and
describe the source in eqn (3) by the single variable

Drs� = Dr� + 2Dr�2, (7)

without considering its breakdown into the two individual
contributions. Only in this case the constraint eqn (3) can be
taken into account simply by a penalty potential term in the
free energy. If one wants to go beyond that, Dr� and Dr�2 must
be considered as additional system variables with the free
energy cost eqn (6), while eqn (3) is an additional equation
besides that of the free-energy minimization. Including in this
case also a general free-energy coupling of both source densities
to existing system variables is natural, but already highly
detailed.

Considering combined sources, the free-energy density of
the total source Drs� is obtained by averaging eqn (6) over all

possible realizations eqn (7) of Drs�:

D�f Drs�
� �

¼
ðð1
�1

dDr�dDrp�Df ðDr�;Drp�Þ

�PðDr�ÞPðDrp�ÞdðDr� þ pDrp� � Drs�Þ;
(8)

with Drp� � Dr2� and p(=2) introduced for trackability. Here

P Dr�
� �

/ e
�
V1 Dr�ð Þ2

2r�
0 (9)

and analogously for P(Drp�), V1 is an arbitrary volume (e.g. the
coarse-graining volume) not appearing in the final result and
the normalization is

1 ¼
ðð1
�1

dDr�dDrp�P Dr�
� �

P Drp�
� �

� d Dr� þ pDrp� � Drs�
� �

:

(10)

The result of the integration eqn (8) is

D�f Drs�
� �

¼ kBT

2

1

V1
þ Drs�ð Þ2

r�0 þ p2rp�0

 !
; (11)

where the first, constant term kBT/(2V1) can be omitted—it
arises due to the fact that the state Drs� = 0 can be realized
by Dr� = �pDrp� a 0, which costs energy.

The average free-energy density of the total source Drs�

is thus

D�f Drs�
� �

¼ kBT

2

Drs�ð Þ2

r�0 þ 4r2�0
� 1

2
G Drs�
� �2

(12)

and presents a penalty potential with strength G of the con-
tinuity constraint eqn (3) for the recovered polar order. We note
again that this is the leanest possible treatment of the sources
that however takes into account both chain ends Dr� as well as
chain backfolds Dr2�. In this minimal picture, they are merged
into a single source, Drs�. The key implication is the weighted
composition of the effective susceptibility G p 1/(r�0 + 4r2�

0 )
from the equilibrium densities, where the contribution of the
backfolds r2�

0 is (�2)2 = 4 times that of the ends r�0 .
Note that in the limit of noninteracting chain ends the

distribution of chain lengths is irrelevant—it is just the density
of chain ends r�0 that matters. Only for monodisperse chains
with Ns segments we have simply r�0 = 2r/Ns. Naturally, broadening
the distribution of Ns at fixed r�0 and r will increase the density
of backfolds r2�

0 (unless the persistence length is either very
large or very small compared to the chain lengths) and will thus
weaken the constraint according to eqn (12). Determining
r2�

0 is, however, a separate problem, whereas for the presented
macroscopic description r2�

0 is a parameter. In fact, the
strength of the constraint is a macroscopic probe of the density
of microscopic chain backfolds.

† This is a trivial statement. In a nematic, there can be no physical distinction
between beginnings and endings. Moreover, the arbitrary choice of the direction
of chain parametrization cannot influence any physical configuration whatsoever:
selecting at random a chain end anywhere in the system, under any condition,
there is no preference towards a beginning or ending. In a nematic, r+ and r� are
not separate variables. There is only one variable, Dr�.
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3 Macroscopic description of
fluctuations

We neglect fluctuations of the nematic order modulus and
expand the coarse-grained segment density r = r0 + dr(q) and
director n = n0 + dn(q) fields around their equilibrium values r0,
n0. Since |n|2 = 1, the director fluctuations dn are orthogonal to
n0. Conforming to the uniaxial symmetry, the Fourier space is
set up as q = q> + q8n0, where q> is an arbitrary direction
perpendicular to n0. The free-energy1,7 contribution of a Fourier
mode in the volume V is Fq = f (q)/V and

f ðqÞ ¼ 1

2
~G qk

dr
r0
þ q?dnL

����
����
2

þ1
2
B
dr
r0

����
����
2

þ 1

2
K1q?

2 þ K3qk
2

� �
dnLj j2

þ 1

2
K2q?

2 þ K3qk
2

� �
dnTj j2;

(13)

where dnL, dnT are the longitudinal (lying in the plane defined
by n0 and q>) and transverse components with respect to q>, B is
the compressibility modulus and K{1,2,3} are the {splay,twist,bend}
elastic constants. The first term of eqn (13) is exactly the
free-energy cost eqn (12) of the total source Drs�, expressed by
the left-hand side of the conservation law eqn (3) for the
recovered polar order; here G̃ = G(r0‘0ar

0)2 and ar
0 is the

equilibrium magnitude of the recovered polar order.
The theoretical structure factor of the coarse-grained system

S(q) = hdr(q)dr(�q)i/N, where N is the total number of ‘0
segments, corresponding to the free-energy eqn (13) is then
found to be1,7

SðqÞ ¼ kBTr0
q?

2 þ K1q?
2 þ K3qk

2
� ��

~G

Bq?2 þ B
�

~Gþ qk2
� �

K1q?2 þ K3qk2
� �; (14)

while the longitudinal director fluctuation DL(q) =
hdnL(q)dnL(�q)i/N is1,7

DLðqÞ ¼
kBT

r0

qk
2 þ B

�
~G

Bq?2 þ B
�

~Gþ qk2
� �

K1q?2 þ K3qk2
� �: (15)

The dependence of the structure factor eqn (14) on the
reduced susceptibility G̃ makes it a suitable signal for detecting
the constraint eqn (3) and determining its strength from mole-
cular simulation data, Fig. 3. The comparison is restricted to the
region of low q (on the scale of the monomer size), where
microscopic simulation and coarse-grained theory should agree.

4 Mesoscopic WLC model and
simulations

Validating the predictions of the macroscopic theory with
molecular-level computer simulations of polymer nematics25,26

is challenging, since such simulations must (i) address the long-
wavelength limit and (ii) realize different regimes of chain
backfolding (hairpin formation). Thus, it is essential to consider
large systems containing long polymer chains.27 We fulfill these

requirements benefiting from a recently developed mesoscopic
model13 which describes the polymers as discrete WLCs, Fig. 2
(middle, right).

The modeled system contains Nc monodisperse WLCs com-
prised of Ns linearly connected segments of fixed length l0.
Consecutive segments are subjected to a standard angular
potential Ub = �eui(s)�ui(s + 1), where ui(s) is the unit vector along
the s-th segment of the i-th chain and e controls the WLC bending
stiffness. Non-bonded interactions between segments are intro-
duced via the potential Unb = U(rij(s,t))[k � (2n/3)qi(s):q j(t)], where
U(rij(s,t)) = C0Y(2s � rij(s,t))[4s + rij(s,t)][2s � rij(s,t)]2 and rij(s,t) is
the distance between the centers of the s-th and t-th segments
of the i-th and j-th chain, respectively. The interaction range
is controlled by s as indicated by the Heaviside function Y.
To validate the predictions of the macroscopic theory it is
sufficient to employ a generic model with a single ‘‘micro-
scopic’’ length scale. Hence, we set s = l0, although other
choices are possible28,29 when modeling actual materials. The
integrated strength of U(rij(s,t)) is normalized to l0

3, choosing
C0 = 3l0

3/(64ps6). The strength of the isotropic repulsion between
the segments is controlled by the parameter k. Nematic alignment
is promoted by the anisotropic part of Unb, which depends on the
inner product of tensors qi(s) = [3ui(s) # ui(s) � I]/2 quantifying
the segmental orientation in the laboratory frame. The strength of
these Maier–Saupe-like interactions is controlled by n.

Two molecular flexibilities e = 0 and e = 3.284kBT are
addressed, corresponding to flexible and stiff chains, respec-
tively. In both cases, we consider WLCs with Ns = {32,64,128}
segments. We empirically set k = 7.58kBT, while n = 3.33kBT and
6.66kBT for the stiff and flexible chains, respectively. For this k,
the repulsive interactions are strong enough to furnish a stable
polymer liquid (positive compressibility28) but remain sufficiently
‘‘soft’’ for efficient simulations. Our choices of n lead to stable and

Fig. 3 Top: Structure factors S(q>l0,q8l0) calculated in simulations (solid),
scaled to their maximum values and fitted (wireframe) by eqn (14), for stiff
(left column) and flexible (right column) chains of length 128l0; l0 is the
length of the WLC segment. Bottom: Cross sections of S�1 for q> = 0
(black) and q8 = 0 (red).

Paper Soft Matter



5902 | Soft Matter, 2018, 14, 5898--5905 This journal is©The Royal Society of Chemistry 2018

sufficiently deep nematic order in the entire range of considered
stiffness parameters: the moduli of the uniaxial quadrupolar
order are S = {0.652,0.668,0.678} and S = {0.840,0.842,0.842} for
stiff and flexible chains with Ns = {32,64,128}, respectively, while
the corresponding moduli of the recovered polar order are
ar

0 = {0.865,0.872,0.876} and ar
0 = {0.943,0.944,0.944}; all standard

errors are below 0.05%.
We study large nematic monodomains containing N = NcNs= 218

segments, Fig. 2 (right). They are equilibrated through MC starting
from configurations where all chains are stretched and aligned
along the z-axis of the laboratory frame, having their centers-
of-mass randomly distributed. The MC algorithm utilizes
standard30,31 slithering-snake moves, as well as volume fluctua-
tion moves at pressure Pl0

3/(kBT) = 2.87 resulting in system’s
volume fluctuations of B1%. While working in the isothermal–
isobaric ensemble is computationally more expensive, it is
preferred to exclude isotropic/nematic coexistence in the entire
range of considered parameters.

Since the global nematic direction and the ensemble volume
are free to fluctuate, we compute the structure factor S(qx,qy,qz)
of each configuration in the laboratory frame and assign it to a
bin representing S(q>,q8), where q8 and q> = |q>| are the
components parallel and orthogonal to the current nematic
director determined as the principal eigenvector of ð1=NÞ

P
i;s

qiðsÞ.

With that, S(q>,q8) is computed in the director-based 123
frame.13,32,33 The principal eigenvector is also used to determine,
for each configuration, the modulus of the recovered polar
order ar

0 appearing in the definition of G̃, which is then
averaged over all recorded configurations. The same is done
for the density of segments r0 = N/hVi (putting ‘0 = l0) in
eqn (14), as well as the densities of chain ends r�0 and backfolds
r2�

0 in eqn (12). In all cases, block-averaging with block size t is
employed, where t is the number of MC steps needed to
decorrelate the end-to-end vector of the WLC. Computationally
most severe are stiff chains with Ns = 128 segments, where t was
as high as 130 000 and a MC sequence of 48t was reached.
In other cases the runs in terms of t were longer.

5 Results & discussion

Large sequences of nematic melt monodomain configurations,
accumulated using the efficient soft model, allow for direct
validation34 of the macroscopic theory via the structure factor
eqn (14). We compute13 also the longitudinal director fluctuation
DL(q) = hdnL(q)dnL(�q)i/N, eqn (15). For stiff chains, where the
constraint eqn (3) is expectedly strong, DL shows a characteristic
strengthening1,13 of the effective splay (K1) elastic constant,
Fig. 4.

The computed S(q>,q8) and DL(q>,q8) landscapes, Fig. 3 and
4, are fitted with the theoretical expressions eqn (14) and (15) to
extract the parameters B, G̃, K1, K3. Fig. 3 (bottom) shows cross
sections of the two-dimensional structure factor fits. For small
wave vectors it is verified that S�1(0,q8) is parabolic, while
S�1(q>,0) is essentially constant, as predicted by eqn (14).
The kinks at q8l0 E �0.5 are attributed to microscopic effects

not captured by the macroscopic theory, e.g. enhanced correla-
tions within single chains or groups of neighboring chains.35

Using averaged values r0 and ar
0, the strength G of the

constraint is determined from the fitting parameter G̃ and is
plotted in dimensionless form in Fig. 5 as a function of the
dimensionless inverse density of chain ends/backfolds as
suggested by eqn (12). The average numbers of backfolds
per chain are {0.33,0.58,1.1} and {11.9,24.0,48.2} for stiff and
flexible chains with Ns = {32,64,128}, respectively. The direct
comparison with the theoretical line, not involving any fitting
parameter, confirms the relevance of the prediction eqn (12),
while the agreement of the slopes is especially notable. More-
over, the points corresponding to the flexible chains in Fig. 5
(inset) show a highly reduced splay–density coupling, thus
confirming the concept of the recovered polar order and the
applicability of the conservation law eqn (3) formulated on
its basis, as well as the role of backfolds as sources in this
conservation law.

It is hard to overlook the hinted offset of the simulated stiff
chain points from the theoretical solid line in Fig. 5. We interpret
it as a deviation from the noninteracting gas idealization of the

Fig. 4 Longitudinal director fluctuations DL(q>l0,q8l0) calculated in simu-
lations (solid), fitted (wireframe) by eqn (15), for stiff (left) and flexible (right)
chains of length 128l0.

Fig. 5 Dimensionless strength of the constraint G = G̃/(r0l0q0)2, deter-
mined from the fits of the MC structure factor landscapes Fig. 3, versus the
dimensionless inverse density of the combined sources (solid line, no
fitting parameter). Following eqn (19), an offset (dashed line) is fitted to the
three points representing the stiff chains with Ns = {32,64,128}.
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chain ends/backfolds (�particles). It is clear that at least the
intra-chain backfolds of near segments are not independent. In
fact, the computed end–end, hairpin–hairpin and end–hairpin
radial distribution functions (RDFs), Fig. 6, show deviations of
various kinds from the ideal gas behavior g(r) = 1 for r u 3l0. The
end–end RDFs manifest simple repulsion. In contrast, the hair-
pin–hairpin RDFs have a complex structure due to contributions
from hairpins on the same chain: small distances between
sequential backfolds along the chain can assume only specific
values, which explains the pronounced spikes (even for the stiff
WLCs). Such small-scale effects, as well as distinguishing
between intra- and intermolecular backfolds in eqn (12), are
beyond the scope of the present macroscopic theory.

It is, however, sensible to capture the interactions between
the particles by an effective free-energy density f (rs�) of the
particle distribution rs�,

f rs�
� �

¼ kBTrs� ln
rs�

C
þ 1

2
A rs�
� �2

; (16)

where the pair-interaction free-energy density is proportional to
(rs�)2 by definition, while all details of this interaction are
contained in a phenomenological second virial coefficient A;
A 4 0 stands for an effective repulsion. The first derivative
p0 = �V0qf/qV = rqf/qr determines the ‘‘osmotic pressure’’ p0

required to maintain an equilibrium density rs�
0 of particles.

In other words,
@H

@V
¼ 0 holds in equilibrium, where H = V0f + p0V

is the Gibbs free energy. Here V0 represents the volume of an
arbitrary portion (as does V), but (unlike V) is not included in the
differentiation since the number of particles within the portion
is considered fixed. Thence, keeping V0 = V constant, the expansion
of H for a nonequilibrium distribution Drs�(r) = rs�(r)� rs�

0 within
the portion is

DH ¼ V 0Df ¼ V 0
@f

@rs�

����
rs�
0

Drs� þ V 0
1

2

@2f

@ rs�ð Þ2

�����
rs�
0

Drs�
� �2

: (17)

Since the spatial average of Drs� is zero, the linear term
vanishes and we have

Df Drs�
� �

¼ 1

2

@2f

@ rs�ð Þ2

�����
rs�
0

Drs�
� �2

: (18)

Considering in eqn (18) only the first, entropic contribution in
eqn (16), the nonequilibrium ideal gas expressions eqn (6)
follow. Taking into account also the second, interaction con-
tribution of eqn (16), we finally get

Df Drs�
� �

¼ 1

2

kBT

rs�0
þ A

� �
Drs�
� �2

; (19)

which would explain the rather constant positive offset (A 4 0)
of G(1/rs�

0 ) observed in Fig. 5 (dashed line) for the set of stiff
chains. This repulsive effective interaction makes nonequili-
brium excursions Drs�more expensive, eqn (19), and hence the
constraint eqn (3) is stronger. Note, however, that the strength
A of the effective interaction depends on the composition of the
particle gas, i.e., the ratio r2�

0 /r�0 , and furthermore that also the
RDFs depend on Ns and other parameters.

6 Conclusion

In summary, we have established a consistent macroscopic
description of the splay–density coupling in semiflexible
main-chain nematic polymers with hairpins, using a vectorial
continuity constraint for the recovered polar order of chain
tangents and introducing chain backfolds as its new type of
sources besides chain ends. In the minimal spirit, we unified
both types of sources to a mixture of two ideal gases with fixed
composition. Conducting detailed Monte Carlo simulations of
nematic monodomain melts of worm-like chains with variable
length and flexibility, we demonstrated that the chain back-
folding weakens the splay–density coupling. We showed how
this weakening can be quantified on the macroscopic level by
connecting the strength of the coupling with the macroscopic
equilibrium densities of chain ends and backfolds. Refine-
ments and ramifications of this first description are possible
in various directions. The possibility of virial corrections has
been briefly illuminated. They can be introduced for each type
of sources separately to take into account its empirical specifics,
in particular the effective interaction between the backfolds of
the same chain and an anticipated direct influence of the
bending rigidity of the chain on this interaction. It is also
possible to introduce the sources as one or more additional
field variables and couple them in a phenomenological spirit to
the existing system variables by general symmetry-allowed
coupling terms.
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Fig. 6 RDFs of chain ends and backfolds (hairpins) for stiff (black) and
flexible (red) chains with Ns = 128 obtained in simulations. The end–hairpin
RDFs (not shown) are qualitatively similar to the hairpin–hairpin RDFs.
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Appendix
A Vectorial conservation law

Define the microscopic worm-like chain tangent field

jmic
i ðxÞ ¼

X
a

ð
xaðsÞ

ds d x� xaðsÞð ÞtiðsÞ; (20)

where xa(s) is the continuous contour of chain a in natural
parametrization and t(s) = dxa(s)/ds is the unit tangent on the
chain. For brevity we will be omitting the superscript a and the
sum

P
a

over the chains. Taking the divergence of eqn (20) and

transforming it stepwise, we get

@i j
mic
i ðxÞ ¼

ð
xðsÞ

ds
dxiðsÞ
ds

@

@xi
dðx� xðsÞÞ

¼ �
ð
xðsÞ

ds
dxiðsÞ
ds

@

@xiðsÞ
dðx� xðsÞÞ

¼ �
ð
xðsÞ

ds
d

ds
dðx� xðsÞÞ

¼ dðx� xð0ÞÞ � dðx� xðLÞÞ;

(21)

where L is the length of the chain.
Coarse-graining (denoted by ) the microscopic field

eqn (20) to a mesoscopic volume V0 centered at x gives the
corresponding mesoscopic field

jðxÞ ¼ jmicðxÞ ¼ 1

V0

ð
V0ðxÞ

d3x0 jmicðx0Þ

¼ 1

V0

ð
xðsÞ2V0ðxÞ

ds tðsÞ

¼ LðxÞ
V0

1

LðxÞ

ð
xðsÞ2V0ðxÞ

ds tðsÞ;

(22)

where LðxÞ ¼
Ð
xðsÞ2V0ðxÞds � NðxÞ‘0 is the total length of the

chain within the volume V0, which can be expressed in terms of
an arbitrary segment length ‘0 and the number N of these
segments within the volume. Hence, the mesoscopic field can
be written as

j(x) = r(x)‘0a(x), (23)

where r(x) = N(x)/V0 is the mesoscopic volume number density
of the segments and

aðxÞ ¼ 1

LðxÞ

ð
xðsÞ2V0ðxÞ

ds tðsÞ (24)

is the mesoscopic average of t(s), i.e., the polar order of polymer
chain tangents.

We apply this coarse-graining procedure to eqn (21) and

take into account that r and coarse-graining commute,

i.e., qi jmic
i = qi jmic

i = qi ji. The result is an equation for the
continuum mesoscopic field—the vectorial conservation law

r�j = r�(r‘0a) = r+ � r�, (25)

where r+(x) = d(x � x(0)), r�(x) = d(x � x(L)) are mesoscopic
densities of beginnings and endings of the chains.
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6 D. Svenšek, G. M. Grason and R. Podgornik, Phys. Rev. E:

Stat., Nonlinear, Soft Matter Phys., 2013, 88, 052603.
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