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New symplectic integrators have been developed by combining molecular dynamics integration
with the standard theory of molecular vibrations to solve the Hamiltonian equations of motion. The
presented integrators analytically resolve the internal high-frequency molecular vibrations by
introducing a translating and rotating internal coordinate system of a molecule and calculating
normal modes of an isolated molecule only. The translation and rotation of a molecule are treated
as vibrational motions with the vibrational frequency zero. All types of motion are thus described in
terms of the normal coordinates. The method’s time reversibility requirement was used to determine
the equations of motion for internal coordinate system of a molecule. The calculation of long-range
forces is performed numerically within the generalized second-order leap-frog scheme, in the same
way as in standard second-order symplectic methods. The new methods for integrating classical
equations of motion using normal mode analysis allow us to use a long integration step and are
applicable to any system of molecules with one equilibrium configuration. ©2005 American
Institute of Physics. fDOI: 10.1063/1.1884607g

I. INTRODUCTION

The standard integrators for solving the classical equa-
tions of motion are the second-order symplectic leap-frog
Verlet sLFVd algorithm1 and its variants. Their power lies in
their simplicity since the only required information about the
studied physical system are its interacting potential and the
time scale of the fastest motion in the system, which deter-
mines the integration time step size. Therefore they are em-
ployed for solving dynamics problems in a variety of scien-
tific fields, e.g., molecular dynamicssMDd simulation,2,3

celestial mechanics,4–6 and accelator physics.7 However, in
the case of MD integration, the integration time step size is
severely limited due to the numerical treatment of the high-
frequency molecular vibrations, which represent the fastest
motion in the system.8 Therefore a huge number of integra-
tion steps is usually required to accurately sample the phase
space composed of all the coordinates and momenta of all
the particles. This is a time consuming task and is often too
demanding for the capabilities of contemporary computers.

One way of overcoming the limitation of the standard
methods’ integration time step size is to freeze the high-
frequency motions using constraints as in SHAKE and
RATTLE.9,10 The problem of such an approach is that the
treatment of bonds as constraints prevents the generation of
low-frequency modes from coupled vibrations and it also
prevents the relaxation of vibrations under the influence of
an external field.11 Also, the high-frequency peaks cannot be
reproduced in computed vibrational spectra. An alternative
way is to use multiple integration time stepping schemes,
e.g., Verlet-I/r-RESPA,12,13 where the high-frequency mo-
lecular vibrations are numerically integrated with corre-

spondingly shorter integration time steps as used for remain-
ing low-frequency motion. The increase of the integration
time step size is obtained by adding extra information about
the studied physical system with respect to the LFV algo-
rithm, i.e., all time scales and different types of interactions
in the system must be considered.14–21Thus there is a trade-
off between a method’s simplicity and general applicability
to different kinds of physical systemssLFV algorithmd and a
method’s increased efficiency for a specific physical systems,
i.e., molecular systemssVerlet-I/r-RESPAd.

Another approach is the analytical treatment of high-
frequency molecular vibrations, which requires the standard
theory of molecular vibrations22 to be built into the integra-
tion method. In this way the fast degrees of freedom are
rigorously treated and not removed, as in the case of rigid-
body dynamics,23–25 where small molecules are treated as
rigid bodies. The first attempt in this direction was intro-
duced in Ref. 26 where an integration algorithm for MD
simulations of an isolated linear molecule using the splitting
of the total Hamiltonian into the high-frequency harmonic
and low-frequency remaining part was presented. The high-
frequency molecular vibrations, which were described only
by the harmonic bond stretching potential, were resolved
analytically using the normal coordinates. The method intro-
duced in Ref. 26 was extended in Refs. 27 and 28 to also
treat systems of linear molecules. An important methodologi-
cal step in the development of this approach is presented in
Ref. 29 where normal modes with frequency zero were first
used for describing the rotation and translation of molecules.
In addition the angle bending term was also included for
analytical description of the vibrational motion. A study of
the system density dependence of the size of the maximal
allowed integration time step is presented in Ref. 30. How-
ever, the equations defining the equilibrium configuration of
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each molecule and its motion, which are the fundamental
components of the described method, have not been pre-
sented yet.

A major goal of the present paper is to present a new
semianalytical symplectic MD integration method split inte-
gration symplectic methodsSISMd, which combines the
standard theory of molecular vibrations and MD integration.
The key feature in which the presented approach differs from
all other similar approaches for MD integration is the ana-
lytical description of coupled molecular vibrations, which is
possible only by using the normal coordinates22 and a trans-
lating and rotating internal coordinate system of each
molecule.31,32 The description of molecular motion in terms
of normal coordinates provided by the standard theory of
molecular vibrations is also extended to translation and rota-
tion, which are treated as vibration with zero normal mode
frequency. The presented MD integration methods are thus
the direct implementation of the standard theory of molecu-
lar vibrations to calculate the MD trajectories of a molecular
system, where all degrees of freedom are treated classically.
Similar approaches either apply the standard theory of mo-
lecular vibrations to analytically treat the quantum-
mechanical intramolecular vibrational degrees of
freedom,33,34 or do not use the standard theory of molecular
vibrations, in particular, the concept of Eckart frame,31 and
can therefore treat the molecular vibrations only as one-
dimensional harmonic oscillators with a single high-
frequency of oscillation and a fixed direction-in space, e.g.,
NAPA.12,14

Another goal is to describe two variants of the SISM.
First, the multiple time stepping SISMsSISM-MTSd which
besides an analytical treatment of high-frequency molecular
vibrational motion uses also a shorter integration time step
for the numerical integration of high-frequency anharmonic
vibration terms and a correspondingly longer time step for
the dynamics generated by the electrostatic and van der
Waals interactions. Second, the equilibrium SISMsSISM-
EQd, which also treats high-frequency vibrations analytically
but the van der Waals and electrostatic potential energies are
calculated from the equilibrium positions of atoms instead of
from the actual positions of the atoms in a molecule. In this
way a new averaging function, introduced here, is derived
from the standard theory of molecular vibrations, to mollify
the impulse of the electrostatic and van der Waals forces as
proposed in Refs. 35–37, which improves the stability of the
presented integration methods. Combining the SISM-MTS
and SISM-EQ approaches leads to the equilibrium multiple
time stepping SISMsSISM-MTS-EQd method by which the
optimum enlargement of the integration time step is achived.

Shematic presentation of the new symplectic integrators
is given in Fig. 1. These methods are applied in the accom-
panying papers38,39 to various simulations of different sys-
tems of molecules with one equilibrium configuration and no
internal rotation. The results indicate that the presented inte-
grators, due to the analytical treatment of high-frequency
motions, allow considerably longer integration time steps
than the standard LFV algorithm for the same computational
accuracy and computational cost per integration step.

II. MOLECULAR MOTION CHARACTERIZED IN
NORMAL COORDINATES

To describe the atoms’ motion in molecules by normal
coordinates we have modified the dynamical molecular
model introduced in Ref. 32 for molecules with only one
equilibrium configuration and no internal rotation. Using this
approach we are able to define the dynamics of the internal
coordinate system of a molecule and describe vibrational,
translational, and rotational motion in normal coordinates.

First, we introduce a fixed Cartesian coordinate system
defined by the orthogonal right-handed triad of unit vectors
ei, i =1, 2, 3 and denote the instantaneous position vectors of
N atoms of a molecule of the system relative to its origin by
r a, a=1,2,… ,N as presented in Fig. 2. The molecule
center-of-mass vectorR is defined as

R = o
a

mar a/o
a

ma. s1d

Next, we introduce the translating and rotating internal
coordinate system of the molecule, which is attached to the
molecule and moves with it. In the standard theory of mo-
lecular vibrations,22 the Eckart frame,31,32 defined in Appen-
dix A, is chosen to be the internal coordinate system. The
Eckart frame is the internal coordinate system where the cou-
pling between the vibrational and rotational degrees of free-
dom of a molecule is zero at equilibrium. In principle, one
can also choose an alternative reference frame for the inter-
nal coordinate system, as we propose in the present work.

The equilibrium positions of atoms relative to the mol-
ecule’s center of mass are then given by vectorsca,

ca = o
i

ci
af i , s2d

where the orthogonal right-handed triad of unit vectorsf i, i
=1, 2, 3 with the origin in the center of mass of a molecule

FIG. 1. New symplectic integrators.
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defines the internal coordinate system of the moleculessee
Fig. 2d.

The equilibrium positions of atoms in the Cartesian co-
ordinate system are given by

da = R + ca. s3d

The displacement vectors of atoms from their equilib-
rium positions are therefore defined as

ra = r a − da. s4d

If the displacement vectors are written in terms of the inter-
nal coordinate system, the relative Cartesian displacement
coordinates are

ra = sra · f1df1 + sra · f2df2 + sra · f3df3

= Dxaf1 + Dyaf2 + Dzaf3, s5d

where f1,f2, and f3 point alongx,y, andz directions of the
internal coordinate system, respectively.

Using the internal coordinate system, the velocity of
each atom can be split into three parts:22

va = ṙ a = Ṙ + V 3 sr a − Rd + Dva = va
trans+ va

rot + va
vib,

s6d

where Ṙ is the center-of-mass velocity and represents the
translational contribution,V3 sr a−Rd is the contribution
due to rotation of the internal coordinate system, andDva is
the velocity of thea atom in the internal coordinate system

Dva =
dDxa

dt
f1 +

dDya

dt
f2 +

dDza

dt
f3 s7d

and represents the vibrational contribution.
The angular velocityV of the Eckart frame is obtained

by differentiating equation for Eckart conditions, Eq.sA4d,
with respect to time

V = J8−1 ·o
a

maca 3 sṙ a − Ṙd, s8d

whereJ8PR333 is defined as40,41

J8 = o
a

mahfsr a − Rd ·cagI − sr a − Rd ^ caj. s9d

Here ^ is a tensor product of two vectors defined asA =a
^ bsAik=aibkd and I PR333 represents the identity matrix.
Note thatJ8 in the case of nonrigid molecules differs from
the tensor of a molecule’s instantaneous moment of inertia.42

The unit vectorsf i, i =1, 2, 3, of the Eckart frame vary ac-
cording to

ḟ i = V 3 f i, i = 1,2,3. s10d

The kinetic energy can be, by virtue of Eq.sA4d, ex-
pressed as22

T =
1

2o
a

mava
2 =

1

2
Ṙ2o

a

ma

+
1

2o
a

mafV 3 sr a − Rdg · fV 3 sr a − Rdg

+
1

2o
a

maDva
2 + V ·o

a

masra 3 Dvad

= Ttrans+ Trot + Tvib + TCoriolis. s11d

The first term represents the translational energy of a mol-
ecule, the second rotational energy, the third vibrational en-
ergy, and the fourth one the coupling between rotation and
vibration—the Coriolis energy. Translation is completely
separated from the vibrational and rotational motion while
rotation and vibration are coupled.

Using Eq.s6d we can write Eq.s7d as

Dva =
dDxa

dt
f1 +

dDya

dt
f2 +

dDza

dt
f3 = Dvax

f1 + Dvay
f2

+ Dvaz
f3 = sDva · f1df1 + sDva · f2df2 + sDva · f3df3

= hfva − Ṙ − V 3 sr a − Rdg · f1jf1 + hfva − Ṙ − V

3 sr a − Rdg · f2jf2 + hfva − Ṙ − V 3 sr a

− Rdg · f3jf3. s12d

From Eq.s12d follows that only the vibrational part of the
atom velocityDva=va

vib is expressed in terms of the relative
Cartesian displacement coordinates and consequently in
terms of normal coordinates.22

Alternatively, we can describe also rotation and transla-
tion of a molecule in terms of the normal coordinates. To do
so the whole atom velocity needs to be expressed in terms of
the relative Cartesian displacement coordinates

Dva = Dvax
f1 + Dvay

f2 + Dvaz
f3

= sDva · f1df1 + sDva · f2df2 + sDva · f3df3

= sva · f1df1 + sva · f2df2 + sva · f3df3. s13d

From Eqs.s6d and s13d follows

FIG. 2. Atom displacements in a triatomic molecule in the Cartesian and the
internal coordinate system.
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Dva = va = ṙ a = Ṙ + V 3 sr a − Rd + Dva, s14d

which implies that

Ṙ + V 3 sr a − Rd = 0, s15d

and therefore

Ṙ = 0, s16d

V = 0. s17d

Equations16d requires the origin of the internal coordinate

system to be at rest and from Eq.s17d follows that ḟ i =V
3 f i =0, i =1, 2, 3. These conditions demand that the internal
coordinate system is fixedsthe velocity in the internal coor-
dinate system must be equal to the velocity in the Cartesian
coordinate systemd, which means that the equilibrium con-
figuration of the molecule is also at rest,

Dva = ṙa − V 3 ra = ṙa = ṙ a − ḋa = ṙ a = va ⇒ ḋa = 0.

s18d

It is important to emphasize that the dynamics of the
internal coordinate system obeying the conditionss16d and
s17d is different from the dynamics of the Eckart framefsee
Eq. s8dg, which is employed in the standard theory of mo-
lecular vibrations. Due to the translational and rotational mo-
tion, the position of the center of mass as well as the orien-
tation of a molecule change. The requirementss16d ands17d
reflect the change in understanding of the translational and
rotational motion of a molecule which are here treated as
vibrations with zero frequency. The motion of the center of
mass and the orientation of a molecule are thus described by
the equations of motion for the normal coordinates with fre-
quency zero.

The vibrational potential energy can be expanded in a
power series of the relative displacements of atoms from
their equilibrium positions as

Vvib = Vvib0
+ o

i=1

3N S ]Vvib

]Dqi
D

0
Dqi

+
1

2 o
i,j=1

3N S ]2Vvib

]Dqi ] Dqj
D

0
DqiDqj + ¯

=
1

2 o
i,j=1

3N S ]2Vvib

]Dqi ] Dqj
D

0
DqiDqj + ¯ , s19d

where

Dq = sDq1,Dq2,…,Dq3Nd

= sDx1,Dy1,Dz1,…,DxN,DyN,DzNd

is a vector of the relative displacements of atoms from their
equilibrium positions. We setVvib0

=0 and s]Vvib/]Dqid0=0
because there are no forces acting on atoms in the equilib-
rium positions.22

The standard theory of molecular vibrations considers
only motions in which all coordinates vary by infinitesimal
amounts. In molecular systems, however, the atoms’ coordi-

nates change by finite amounts due to the translational and
rotational motion of molecules. By introducing the Eckart
frame for the internal coordinate system of a molecule, the
problem of vibrational motion of a molecule can be consid-
ered independently from its rotation and translation.22 Using
the Eckart frame we can define equilibrium positions of the
atoms in a molecule in such a way that the displacements of
the atoms are sufficiently small, so that the normal mode
analysis can be applied.

In normal mode analysis, where it is assumed thatDqi

are sufficiently small, only quadratic terms are kept in the
expansions19d and all higher terms are neglected,22

Vvib < Vharm=
1

2 o
i,j=1

3N S ]2Vvib

]Dqi ] Dqj
D

0
DqiDqj

=
1

2 o
i,j=1

3N S ]2Vharm

]Dqi ] Dqj
D

0
DqiDqj =

1

2 o
i,j=1

3N

HijDqiDqj

=
1

2
Dq ·H · Dq. s20d

Here

Hij = Hji = S ]2Vvib

]Dqi ] Dqj
D

0
= S ]2Vharm

]Dqi ] Dqj
D

0
s21d

are the elements of the HessianH PR3N33N, symmetric ma-
trix of the second derivatives of the vibrational potential en-
ergy.

To determine the vibrational motions of the system, the
eigenvalues and eigenvectors of the mass-weighted Hessian
M −1/2·H ·M −1/2 have to be calculated.22,43–45 This leads to
solving a secular equation

detsM −1/2 ·H ·M −1/2 − lI d = 0, s22d

whereM PR3N33N is a diagonal mass matrix. The diagonal
elements areM11=m1, M22=m1, M33=m1,… ,M3N−2,3N−2

=mN, M3N−1,3N−1=mN, M3N,3N=mN. For a nonlinear molecule
composed ofN atoms, 3N−6 nonzero eigenvalues,vk=Îlk,
provide the normal, or fundamental, frequencies of vibration
and their associated eigenvectors, normal modes, give the
directions and relative amplitudes of the atomic displace-
ments in each mode. Six of 3N roots in the Eq.s22d are zero.
They correspond to three translations and three rotations of a
molecule as a whole.22

Once the normal modes and normal frequencies are de-
termined the normal coordinatesQk, k=1,2,… ,3N can be
introduced, which are in terms of the relative Cartesian dis-
placement coordinates defined by a linear orthogonal trans-
formation and represent independent degrees of freedom.
The columns of the transformational matrixA between the
normal and relative Cartesian displacement coordinates,42

Qk = o
i=1

3N

ÎMiiAikDqi, k = 1,2,…,3N, s23d

are the eigenvectors ofM −1/2·H ·M −1/2.
The equations of motion for the normal coordinates are
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Q̈k + lkQk = Q̈k + vk
2Qk = 0, k = 1,2,…,3N s24d

and hold only for positivevk.
22

3N−6 normal coordinates, which correspond tovk.0,
describe molecular vibrations. The remaining six normal co-
ordinates describing three translations and rotations of a mol-
ecule are introduced in such a way that the conditions re-
quired to define the Eckart frame can be written as22

Qk = 0, Q̇k = 0, k = 3N − 5,…,3N. s25d

The Eckart frame is therefore the internal coordinate system,
which determines such equilibrium positions of atoms that
their displacements are zero in the normal modes withvk

=0 that describe rotational and translational motions of a
molecule.

The momentumPk conjugate to the normal coordinate
Qk is defined as

Pk =
]T

]Q̇k

= Q̇k + fsm1,…,mN,Q1,…,Q3N−6,Vd, s26d

where fsm1,… ,mN,Q1,… ,Q3N−6,VdÞ0 is a function of
V ,ma, a=1,… ,N, andQk, k=1,… ,3N−6 and stems from
the coupling between rotational and vibrational degrees of
freedom.22

In accordance with Eq.s12d

2Tvib = o
a=1

N

maDva
2 = o

k=1

3N

Q̇k
2 = o

k=1

3N−6

Q̇k
2. s27d

In the standard theory of molecular vibrations the transla-
tional and rotational degrees of freedom are described by the

equations of motion for the center of massṘ
=oamava /oama and orientation of a molecule, Eq.s10d. As
it turns out this kind of approach is very difficult to imple-
ment in an integration method for MD simulation27,28 due to
the Coriolis coupling between rotation and vibration.

Alternatively, we use Eq.s13d for the velocity transfor-
mation. The total kinetic energy of a molecule can then be in
terms of the normal coordinates written as

T =
1

2o
a

mava
2 =

1

2o
a

maDva
2 =

1

2o
k=1

3N

Q̇k
2. s28d

In this sum, as opposed to Eqs.s11d and s27d, also included

are the normal coordinates withvk=0 for which Q̇k is, in
general, nonzero. In this case the momentum conjugate to the
normal coordinateQk is

Pk =
]T

]Q̇k

= Q̇k. s29d

The expressions29d differs from Eq. s26d, where only the
vibrational part of the velocity is expressed in terms of the
normal coordinates, in that there is no coupling term between
rotation and vibration.

The total kinetic energy can now be written in terms of
Pk as

T =
1

2o
k=1

3N

Pk
2, s30d

which already takes the Hamiltonian form, as opposed to Eq.
s11d, since it is expressed with momenta only. This is an
important fact for the application of Hamilton mechanics42 in
MD simulation where the Hamiltonian of the system must be
expressed as a function of generalized coordinates and their
conjugate momenta, and not as a function of coordinates and
velocities.46

Using Eq. s29d, the equations of motions24d take the
Hamiltonian form as

d

dt
Pk = − vk

2Qk,
d

dt
Qk = Pk, k = 1,2,…,3N. s31d

The general solution of this Hamilton system of equations is

Qkstd = Ak sinsvkt + «kd, s32d

Pkstd = vkAk cossvkt + «kd, s33d

whereAk and«k are the amplitude and the vibrational phase
determined from the initial valuesQks0d and Pks0d, respec-
tively.

The particular solution of the systems31d can be written
as2

FPkstd
Qkstd

G = Fcossvktd − vk sinsvktd
1

vk
sinsvktd cossvktd

GFPks0d
Qks0d G . s34d

Equations34d describes vibrational motion corresponding to
the normal modek with vk.0.

Since here the internal coordinate system is not equal to
the Eckart frame, which is not fixed at any time, the require-

ments Qk=0 and Q̇k=0 for the normal coordinates corre-
sponding tovk=0 given by Eq.s25d are no longer valid. The
equations of motion for the translation and rotation of a mol-
ecule in terms of the normal coordinates, obtained from Eq.
s34d for the normal coordinates withvk=0 and using
limx→0ssinx/xd=1, are

Pkstd = Pks0d, s35d

Qkstd = Pks0dt + Qks0d. s36d

Since rotation is described by Eq.s36d in the same way
as translation, it follows that Eq.s36d cannot be used for the
description of rotation of a molecule for infinitely long times
t. Equationss34d ands36d hold only for finite time intervals.
In the integration method for MD simulation, in which Eqs.
s34d and s36d are used for the propagation of the normal
coordinates, the internal coordinate system cannot be fixed,
but must be moved at least once per integration step so that
Eq. s36d can be used to describe both the rotation and trans-
lation of a molecule. At the same time the internal coordinate
system of a molecule must be fixed at that point in the algo-
rithm where Eqs.s34d and s36d are applied, so that Eq.s13d
holds for the transformation of the velocity.

Expressing the total velocity in terms of the normal co-
ordinates simplifies the treatment of vibrational and rota-
tional degrees of freedom. In Eq.s28d, the problem of cou-
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pling between vibration and rotation is avoided since they
are decoupled, which is not the case in Eq.s11d. Also, there
are no system forces present in the internal coordinate sys-
tem because it is fixed during the propagation of the normal
coordinates by Eqs.s34d ands36d. This greatly simplifies the
transformations between Cartesian and relative Cartesian dis-
placement coordinates. Thus the description of all degrees of
freedom of a molecule in terms of the normal coordinates,
which we have used in our MD integration approach, is more
convenient for the development of a new integration method
for MD simulation than the standard approach in which only
vibrational degrees of freedom are treated with the normal
coordinates.

III. NEW SYMPLECTIC INTEGRATORS

The new symplectic methods for MD integration are de-
veloped by implementing the derived dynamics of the inter-
nal coordinate system of a molecule into MD integration
scheme.

In MD simulations for each atom of the system the
Hamilton equations are solved

dh

dt
= hh,Hj = L̂Hh, s37d

whereL̂H is the Lie operator,h,j is the Poisson bracket,42 and
h=sq ,pd is a vector of the coordinates of all the particles
and their conjugate momenta.

The formal solution of the Hamiltonian systems37d can
be written in terms of Lie operators as

uhutk+Dt = expsDtL̂Hduhutk, s38d

and represents the exact time evolution of a trajectory in
phase space composed of coordinates and momenta of all the
particles fromtk to tk+Dt, whereDt is the integration time
step.42

A. Split integration symplectic method

The first step in the development of a new symplectic
integration method is to split the HamiltonianH of a system
into two parts,26,27

H = H0 + Hr , s39d

whereH0 is the part of the Hamiltonian that can be solved
analytically andHr is the remaining part.

Next, a second-order approximation for Eq.s38d, known
as the generalized leap-frog scheme,47,48 is used

uhutk+1
= expSDt

2
L̂H0

DexpsDtL̂Hr
dexpSDt

2
L̂H0

Duhutk

+ OsDt3d, s40d

which defines the SISM. The whole integration time step
combines the analytical evolution ofH0 with a correction
from Hr resolved by numerical integration.

The model Hamiltonian has the following form:

H = o
i

pi
2

2mi
+

1

2 o
bonds

kbsb − b0d2 +
1

2 o
angles

kusu − u0d2

+
1

2 o
torsions

V0scosf − cosf0d2 + o
i. j

eiej

4pe0r ij

+ o
i. j

4«i jFSsi j

r i j
D12

− Ssi j

r i j
D6G , s41d

where i and j run over all atoms,mi is the mass of theith
atom,pi is the linear momentum of theith atom,b0 andu0

are reference values for bond lengths and angles, respec-
tively, kb andku are corresponding force constants,f0 are the
reference values for the torsion angles, andV0 are the corre-
sponding barrier heights,ei denotes the charge on theith
atom,e0 is the dielectric constant in vacuum,r ij is the dis-
tance between theith and j th atoms, and«i j andsi j are the
corresponding constants of the Lennard-Jones potential.

The Hamiltonians41d is a typical MD Hamiltonian that
describes a system of molecules with only one equilibrium
configuration and no internal rotation. We assume that the
height of the barrier of the torsional potential is large enough
that the motion of atoms in the vicinity of the minimum of
the torsional potential can be treated as a harmonic vibration
around the equilibrium configuration. The vibrational poten-
tial energy defined by Eq.s19d for an individual molecule, is
therefore the sum of vibrational potential energies of all the
molecules in the system,

Vvib = o
j8=1

m

Vvibj8
=

1

2 o
bonds

kbsb − b0d2 +
1

2 o
angles

kusu − u0d2

+
1

2 o
torsions

V0scosf − cosf0d2, s42d

where Vvibj8
is the vibrational potential energy of thej8th

molecule.
The pure harmonic HamiltonianH0 in the splittings39d

is defined as the sum of vibrational energies of all the mol-
ecules in the system,

H0 = T + Vharm= o
j8=1

m

sTj8 + Vharmj8
d, s43d

whereT=oipi
2/2mi is the kinetic energy of all the atoms in

the system,Tj8 is the kinetic energy of thej8th molecule,
Vharm is the harmonic vibrational potential energy, which is
for an individual molecule defined by Eq.s20d, Vharmj8

is the

corresponding harmonic vibrational potential energy of the
j8th molecule, andm is the number of all the molecules in
the system.

The remaining part of the Hamiltonian,

Hr = H − H0 = Vnb + Vah, s44d

is then equal to the sum of the nonbonded potential energy
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Vnb = o
i. j

eiej

4pe0r ij
+ o

i. j

4«i jFSsi j

r i j
D12

− Ssi j

r i j
D6G s45d

and the anharmonic vibrational potential energy of higher
terms scubic, quartic, etc.d in terms of displacements of at-
oms from their equilibrium positions

Vah= Vvib − Vharm. s46d

The underlying principle to enable the SISM to permit
longer integration time steps lies in the analytical treatment
of high-frequency vibrations described byH0. The propaga-
tion schemes40d enables us to treat the time evolution of the
vibrational, rotational, and translational degrees of freedom

of each moleculefdescribed by exp(sDt /2dL̂H0
)g indepen-

dently of all other molecules in the system because the total
intermolecular interactions are described by a seperate term

expsDtL̂Hr
d. Each molecule is treated as an isolated molecule

when propagating by exp(sDt /2dL̂H0
). Propagation by

exp(sDt /2dL̂H0
) can therefore be solved analytically using the

theory described in previous section. Since the normal mode
analysis has to be carried out only once at the outset of the
simulation for an isolated molecule only, a translating and
rotating internal coordinate system of a molecule must be
defined. For the introduced internal system of a molecule the
model described in previous section was incorporated into
the SISM.

The description of time evolution of the rotational and
translational degrees of freedom of a molecule in terms of
the normal coordinates with vibrational frequency zerosv
=0d is closely related to the introduction of the moving and
rotating internal coordinate system of a molecule. Therefore
the total linear momentum of every atom in a molecule is
expressed in terms of the normal coordinates, so that Eqs.
s34d–s36d hold for every molecule in the system.

The transformations between Cartesian, relative Carte-
sian, and normal coordinates of a molecule in the system
used here are as follows. Letei, i =1, 2, 3,ej ·ek=d jk be the
unit vectors of the Cartesian coordinate system. The transfor-
mation from the Cartesian coordinatesXa ,Ya ,Za, wherer a

=Xae1+Yae2+Zae3 andR=Xe1+Ye2+Ze3, to relative Carte-
sian displacement coordinatesDxa ,Dya ,Dza is given by Eq.
s5d, where the displacements of the atoms from their equilib-
rium positionsra and the unit vectors of the internal coordi-
nate systemf i, i =1, 2, 3 are expressed in terms of the Car-
tesian coordinates

f i = f iX
e1 + f iY

e2 + f iZ
e3, i = 1,2,3, s47d

ra = SXa − X − o
i=1

3

ci
af iXDe1 + SYa − Y − o

i=1

3

ci
af iYDe2

+ SZa − Z − o
i=1

3

ci
af iZDe3. s48d

The subscriptsX,Y,Z denotex,y,z components of Cartesian
coordinate system, respectively. By virtue of Eqs.s47d and
s48d the relative Cartesian displacement coordinates are ex-
pressed as

Dxa = ra · f1 = SXa − X − o
i=1

3

ci
af iXD f1X

+ SYa − Y − o
i=1

3

ci
af iYD f1Y

+ SZa − Z − o
i=1

3

ci
af iZD f1Z

,

Dya = ra · f2 = SXa − X − o
i=1

3

ci
af iXD f2X

+ SYa − Y − o
i=1

3

ci
af iYD f2Y

+ SZa − Z − o
i=1

3

ci
af iZD f2Z

, s49d

Dza = ra · f3 = SXa − X − o
i=1

3

ci
af iXD f3X

+ SYa − Y − o
i=1

3

ci
af iYD f3Y

+ SZa − Z − o
i=1

3

ci
af iZD f3Z

.

Back transformation from the relative Cartesian displace-
ment coordinates to Cartesian coordinates is given by

r a = da + ra, s50d

in which

ra = Dxaf1 + Dyaf2 + Dzaf3 = sDxaf1X
+ Dyaf2X

+ Dzaf3X
de1 + sDxaf1Y

+ Dyaf2Y
+ Dzaf3Y

de2

+ sDxaf1Z
+ Dyaf2Z

+ Dzaf3Z
de3. s51d

For each separate component, Eq.s50d can be written as

Xa = X + o
i=1

3

ci
af iX

+ Dxaf1X
+ Dyaf2X

+ Dzaf3X
,

Ya = Y + o
i=1

3

ci
af iY

+ Dxaf1Y
+ Dyaf2Y

+ Dzaf3Y
, s52d

Za = Z + o
i=1

3

ci
af iZ

+ Dxaf1Z
+ Dyaf2Z

+ Dzaf3Z
.

Using Eq.s13d wheref i, i =1, 2, 3, andva are expressed
in terms of their components in the Cartesian coordinate sys-
tem as in the case of transformation of coordinates, the trans-
formation of momenta takes the following form:

Dpax
= pa · f1 = paX

f1X
+ paY

f1Y
+ paZ

f1Z
,

Dpay
= pa · f2 = paX

f2X
+ paY

f2Y
+ paZ

f2Z
,
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Dpaz
= pa · f3 = paX

f3X
+ paY

f3Y
+ paZ

f3Z
, s53d

wherepa=mava is the linear momentum,pa=paX
e1+paY

e2

+paZ
e3.

Back transformation of momenta is the same as in the
case of the transformation of the coordinates given by Eq.
s51d as

pa = Dpax
f1 + Dpay

f2 + Dpaz
f3 = sDpax

f1X
+ Dpay

f2X

+ Dpaz
f3X

de1 + sDpax
f1Y

+ Dpay
f2Y

+ Dpaz
f3Y

de2

+ sDpax
f1Z

+ Dpay
f2Z

+ Dpaz
f3Z

de3. s54d

Transformation from the relative Cartesian displacement
coordinates to the normal coordinates is given by Eq.s23d
with the help of Eq.s29d as

Ql = o
i=1

3N

ÎMiiAilDqi , s55d

Pl = o
i=1

3N
1

ÎMii

AilDpi , s56d

where

Dq = sDq1,Dq2,…,DqNd

= sDx1,Dy1,Dz1,…,DxN,DyN,DzNd

is a vector of relative Cartesian displacement coordinates and
their corresponding momenta are

Dp = sDp1,Dp2,…,Dp3Nd

= sDp1x
,Dp1y

,Dp1z
,…,DpNx

,DpNy
,DpNz

d

= sm1Dv1x
,m1Dv1y

,m1Dv1z
,…,mNDvNx

,mNDvNy
,mNDvNz

d

The subscriptsx,y,x denotex,y,z components of the inter-
nal coordinate system, respectively.

Back transformation from the normal coordinates to the
relative Cartesian displacement coordinates is given by

Dqi =
1

ÎMii
o
l=1

3N

AilQl , s57d

Dpi = ÎMiio
l=1

3N

AilPl , s58d

since the transformation matrixA is orthogonal.

1. Dynamics of internal coordinate system

The internal coordinate system of a molecule changes
with time because the rotation of a molecule changes the
orientation of the internal coordinate system while the trans-
lational motion of a molecule shifts its origin. As follows
from derivation of Eqs.s13d–s18d, the conditionss16d and
s17d require the internal coordinate system of a molecule to

remain fixed during the propagation by exp(sDt /2dL̂H0
). As a

consequence the explicit form of the internal coordinate sys-
tem is required only while transforming between normal and
Cartesian coordinates before and after the propagation by

exp(sDt /2dL̂H0
). We should note that the internal coordinate

system is not equal to the Eckart frame, which also changes

during the propagation by exp(sDt /2dL̂H0
) according to Eq.

s10d. Therefore, equations of motion for the internal coordi-
nate system cannot be derived simply by discretization of
Eq. s10d. It is crucial in the development of the new method
to derive the equations of motion that describe the dynamics
of the internal coordinate system of a molecule. Note that for
symmetry reasons, different molecular configurations can be
related to the same equilibrium configuration and conse-
quently to the same Eckart frame. Therefore, our internal
coordinate system can be derived by means of Eqs.
sA1d–sA3d from some arbitrary configurationwk. To remove
the arbitrariness ofwk we need an extra condition.

Because the SISM is symplectic and symmetric it is time
reversible.2 According to the identity espressing the time re-
versibility condition

exps− DtL̂HdexpsDtL̂Hd = I , s59d

whereI is the identity matrix, all equations defining the new
integration method must be time reversible. Since the action

of the propagator exp(sDt /2dL̂H0
) depends on the internal

coordinate system the dynamics of the internal coordinate
system must be also time reversible. So, if at the end of a
given integration step, the direction of time is reversed, then

the second propagator exp(sDt /2dL̂H0
) in the current integra-

tion step and the first propagator exp(s−Dt /2dL̂H0
) in the sub-

sequent integration step must satisfy the condition

expS−
Dt

2
L̂H0

DexpSDt

2
L̂H0

D = I . s60d

Therefore, Eq.s60d represents a strong restriction to the
choice of the dynamics of the internal coordinate system,
which enables us to combine symplectic MD integration and
molecular vibrational theory.

The linear momentum pk=sp1k
,p2k

,… ,p3Nk
d

=sp1k
,p2k

,… ,pNk
d of a given molecule withN atoms can be

split into a vibrational, rotational, and translational contribu-
tion as in Eq.s6d

pk = pk
vib + pk

rot + pk
trans, s61d

wherepk
vib is the vibrational part,pk

rot is the rotational part,
and pk

trans is the translational part of the linear momentum,
respectively. From the dynamics governed by the normal
modes corresponding to vibrational frequency zerosv=0d as
described by Eqs.s35d ands36d it follows thatpk

rot+pk
transis a

constant of motion during the propagation by

exp(sDt /2dL̂H0
). Only this part of the linear momentum

changes the equilibrium configuration of a moleculesthe ro-
tational part changes the orientation, the translational part
moves the origin of the internal coordinate systemd whereas
the vibrational part of the linear momentum determines only
the displacements of atoms from their equilibrium positions.

If the initial coordinates qk=sq1k
,q2k

,… ,q3Nk
d

=sr 1k
,r 2k

,… ,r Nk
d and the initial momentapk of atoms from

the beginning of thekth integration step are used to deter-
mine the coordinateswk as
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wk = qk + M −1 ·pk
Dt

2
= qk + M −1 · spk

vib + pk
rot + pk

transd
Dt

2
,

s62d

then coordinateswk define the same internal coordinate sys-
tem of a molecule as the actual atoms’ coordinates in the
middle of the integration step after the propagation by

exp(sDt /2dL̂H0
). The formal proof is given in Appendix B.

If the internal coordinate system is changed at the begin-
ning of thekth integration step using the prediction in Eq.
s62d and the direction of time is reversed at the end of thekth
integration step then the same internal coordinate system of a
molecule is predicted in the beginning of thesk+1dth inte-
gration step, as it was used in thekth integration step because
the coordinates of atoms do not change during the propaga-

tion by expsDtL̂Hr
d. This means that the new internal coordi-

nate system of a molecule is equal to the old one if the
direction of time is reversed. The time reversibility condition
of Eq. s60d is thus satisfied by our method. The internal
coordinate system of a molecule remains fixed over the
whole integration step and only changes at the beginning of
each integration step.

The prediction, Eq.s62d, yields the exact equilibrium
configuration of a molecule halfway through the integration
time step. This fact leads to two important consequences.
First, the error of the method remains of the orderOsDt3d
because there is no additional approximation involved. Sec-
ond, the internal coordinate system of the molecule moves
with the moleculesthe equilibrium positions are related via
Eckart conditions to the actual atomistic positionsd providing
that the displacements of the atoms are always kept small so
that the anharmonic part of the vibrational potential energy is
always much smaller than the harmonic one and our normal
mode approach is justified.

2. Algorithm

The algorithm employed for the SISM defined by Eq.
s40d, for each molecule in the system, consists of nine steps
given below.

s0d Initialization: At the outset of a simulation the vibra-
tional frequencies and normal mode vectors of the
mass-weighted HessianM −1/2·H ·M −1/2, whereH is de-
fined by Eq. s21d for an isolated molecule only, are
computed. Also the transformational matrixA between
the relative Cartesian displacement and normal coordi-
nates is determined. The columns ofA are the eigen-
vectors ofM −1/2·H ·M −1/2.

s1d Definition of moving and rotating internal coordinate
system: The internal coordinate system of a molecule is
defined by Eqs.s1d and sA1d–sA3d in which the coor-
dinateswk from the predictions62d are inserted as the
coordinates of the atoms in the molecule. The coordi-
nateswk determine such configuration of the molecule
that has the same Eckart frame as the true configuration
of the same molecule in the middle of the current inte-

gration step during the evolution by expsDtL̂Hr
d fin ac-

cordance with Eq.s16d the same center-of-mass vector

R is used for transformations between different coordi-
nate sets until the next move of the internal coordinate
systemg. Then the relative Cartesian displacement coor-
dinatesDqk,Dpk are obtained fromqk,pk using Eqs.
s49d and s53d. The normal coordinatesQik

,Pik
, i

=1,… ,3N, at the beginning of the current integration
step are determined using Eqs.s55d and s56d.

s2d Propagation by exp(sDt /2dL̂H0
). Rotation ofQik

,Pik
, i

=1,… ,3N, in phase space by corresponding vibrational
frequencyvi for Dt /2 to obtainQik

8 ,Pik
8 , i =1,… ,3N,

using Eq.s34d for vibration svi Þ0d and Eqs.s35d and
s36d for translation and rotationsvi =0d.

s3d Transformation of the normal coordinatesQik
8 ,Pik

8 , i
=1,… ,3N, to the relative Cartesian displacement coor-
dinatesDqk8 ,Dpk8 using Eqs.s57d and s58d.

s4d Transformation of the relative Cartesian displacement
coordinates Dqk8 ,Dpk8 to the Cartesian coordinates
qk8 ,pk8 using Eqs.s52d and s54d.

s5d Evolution by expsDtL̂Hr
d. The numerical integration of

momentasforce calculationd:

pk9 = pk8 − Dt
]Hr

]q
,

where ] /]q=s] /]q1,] /]q2,… ,] /]q3nd and n is the
number of all atoms in the system. SinceHr is the
function of coordinates,]Hr /]p=0, only momenta are
changed in this stepsqk9 ,qk8d.

s6d Back transformation from the Cartesian coordinates
qk9 ,pk9 to the relative Cartesian displacement coordi-
natesDqk9 ,Dpk9 using Eqs.s49d and s53d.

s7d Back transformation from the relative Cartesian dis-
placement coordinatesDqk9 ,Dpk9 to the normal coordi-
natesQik

9 ,Pik
9 , i =1,… ,3N, using Eqs.s55d and s56d.

s8d Propagation by exp(sDt /2dL̂H0
). Again, rotation of the

normal coordinates in phase space forDt /2 to obtain
Qik

- ,Pik
-, i =1,… ,3N, using Eq.s34d for vibration svi

Þ0d and Eqs.s35d ands36d for translation and rotation
svi =0d.

s9d Use Eqs.s57d, s58d, s52d, ands54d to obtainqk+1, pk+1.
Go to s1d until the desired number of integration steps
is reached.

The above equations hold for every atom in a molecule
and for every molecule in the system where the potentialVnb

in Eq. s44d is the only function that depends on all the coor-
dinates of all the atoms in the system not only on the coor-
dinates of atoms in a single molecule. The SISM is schemati-
cally presented in Fig. 3.

Due to the introduction of the translating and rotating
internal coordinate system of a molecule, the HessianH de-
fined by Eq.s21d is diagonalized only once at the beginning
of a simulation, in steps0d. It was assumed that molecules
have only one equilibrium configuration and no internal ro-
tation. Since the displacements of atoms from their moving
equilibrium positions are always sufficiently small, Eq.s20d
holds at any moment. Therefore the HessianH, defined by
Eq. s21d, is the same constant matrix for the entire simula-
tion.
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The translational and rotational motions of a molecule
are described in terms of the normal coordinates. Equations
s35d and s36d are equal for both motions which means that
the rotation is numerically integrated. Equationss35d and
s36d are therefore valid only for someDt that is determined
by the amplitude of displacements of atoms from the equi-
librium so that Eq.s20d holds.

The proposed integration method differs from all other
integration schemes for MD simulation49,50 in that the rota-
tional and translational degrees of freedom are described in
terms of the normal coordinates and the translating and ro-
tating internal coordinate system of a molecule is introduced.
In the presented method the high-frequency harmonic mo-
tions that stem from molecular vibrations are treated analyti-
cally, which enables the SISM to use longer integration time
steps. The time consuming numerical calculation of non-

bonded force, performed by the propagator expsDtL̂Hr
d, is

performed in the same way as in the standard methods, e.g.,
LFV.1 The SISM’s computation time per integration time
step is therefore approximately the same as in the standard
methods and the SISM’s speed-up over the standard methods
is due to longer allowed integration time steps.

The molecular vibrations can be considered as the forced
vibration with the electrostatic and van der Waals interac-
tions playing the role of the external driving force. The SISM
adiabatically couples the high-frequency vibrations of atoms
in a molecule to the slow degrees of freedom in the system.

The propagator expsDtL̂Hr
d changes the momenta of atoms

on account of electrostatic, van der Waals, and anharmonic
interactions determined byVah defined by Eq.s46d. The vi-
brational phase«k in every normal mode of the molecular
vibration is changed accordingly. The changed momenta and
displacements of atoms are transformed to the normal coor-

dinates, and because Eq.s34d is used in the propagation by

exp(sDt /2dL̂H0
), the information about the amplitude and the

vibrational phase of atoms in each normal mode is com-
pletely conserved.42 Since the total vibrational potential en-
ergy Vvib is not the quadratic function of relative Cartesian
displacement coordinates the high-frequency anharmonic
terms collected inVah remain in Hr. Despite thatVah

!Vharm the termVah may not be neglected. The potentialVah

couples the normal modes of a molecule and thus enables the
flow of the energy between them. A molecular system could
not reach thermostatic equilibrium at all in the absence of the
electrostatic and van der Waals interactions if the termVah is
neglected. Therefore not only the harmonic but all terms in
the expansion by Eq.s19d of Vvib are taken into account in
the SISM. For this reason the SISM could be also applied,
already at this stage of development, to MD simulation of
molecules with more than one equilibrium configuration
and/or internal rotations.51–56 However, in this case due to
the substantial anharmonic termVah the integration time step
size could not be longer than the corresponding integration
time step size of the LFV algorithm and no speed-up over the
LFV is gained in this case.

B. Multiple time stepping SISM

The anharmonic potentialVah defined by Eq.s46d is the
only high-frequency term in the Hamiltonians41d that is in-
tegrated numerically in the SISM. The largest high-
frequency contribution inVah comes from the anharmonic
terms of the bond-stretching potential. To overcome the dif-
ficulties caused by the troublesomeVah term, we use a simi-
lar approach as the Verlet-I/r-RESPA method12,13 except that
we use different splitting of the Hamiltonian and analytically
resolve the harmonic part of high-frequency motions.

First we split the HamiltonianH defined by Eq.s41d as

H = H1 + H2, s63d

H1 = Vnb, s64d

H2 = H0 + Vah, s65d

in which H0 is defined by Eq.s43d, the potentialVnb is de-
fined by Eq.s45d, andVah by Eq. s46d.

Using Strang splittings40d, the following approximation

for the propagator expsDtL̂Hd

expsDtL̂Hd = expSDt

2
LVnb

D
3FexpSdt

2
L̂H0

DexpsdtL̂Vah
dexpSdt

2
L̂H0

DGn

3expSDt

2
L̂Vnb

D + OsDt3d, s66d

is used to derive the SISM-MTS. HereDt is the integration
time step anddt=Dt /n is the smaller integration time step
that corresponds to the time scale of high-frequency interac-

tions defined byVah. The propagation by exp(sdt /2dL̂H0
) is

performed analytically using Eqs.s34d–s36d in the same way

FIG. 3. Solution scheme for SISM.
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as in the SISM described in the preceding section. The
SISM-MTS is schematically shown in Fig. 4.

The positionswk, which are used to determine the new
translating and rotating internal coordinate system of a mol-
ecule, are predicted using Eq.s62d, in which positions and

momenta after the first propagation by exp(sDt /2dL̂Vnb
) are

inserted instead of the initialqk and pk at the beginning of
the integration step. In Eq.s62d the integration time stepDt
is substituted bydt. In the SISM-MTS the internal coordinate
system is thus movedn times per integration step.

The difference between the SISM-MTS and Verlet-I/r-
RESPA is in the different splitting of the Hamiltonian and in

the analytical propagation by exp(sdt /2dL̂H0
) using Eqs.

s34d–s36d in the SISM-MTS. In the scheme defined by Eq.
s66d the nonbonded forces are calculated only once per inte-
gration step and the intramolecular linear forces are calcu-
lated n times per integration step. Since this calculation is
much less time demanding than the calculation of long-range
forces,dt=Dt /n can be chosen as small as is required for an
accurate sampling of the motion generated by the high-
frequency interactionsVah.

C. Equilibrium SISM

In the SISM defined by Eq.s40d, the problem of the
high-frequency anharmonic interactions defined byVah in
Eq. s46d cannot be addressed by introducing shorter time

steps as in the SISM-MTS because the coordinates of atoms

remain unchanged during the propagation by expsDtL̂Hr
d.

Since the total kinetic energyT is included inH0, the propa-

gator exp(sDt /2dL̂H0
) is the only propagator that moves the

coordinates in the SISM. Further splitting of expsDtL̂Hr
d into

smaller time steps is senseless because the forces remain the
same. At the same time the problem of resonances that are
induced by the fastest normal modes of molecular
vibrations37 cannot be avoided even in the case of the SISM-
MTS. However, we can apply the idea of the mollified im-
pulse method35–37 sMOLLY d in which the potential of the
slow forces is computed at time averaged values of atom
positions. In this way the components of slow forces, i.e., the
electrostatic and van der Waals forces, are filtered out in the
directions that excite the molecular vibrations generated by
the fast forces, i.e., the forces determined by the bond-
stretching and angle-bending potential that are susceptible to
resonances.

The procedure in the SISM-EQ is that the potential of
nonbonded forces is computed from the equilibrium posi-
tions and that the corresponding force is multiplied by the
corresponding Jacobian as follows:

Vnbsqd → Vnbfdsqdg, s67d

Fnbsqd →JT ·Fnbfdsqdg, s68d

whereVnb is the sum of Coulomb and van der Waals poten-
tials given by Eq.s45d, Fnb=−]Vnb/]q is the corresponding
force, ] /]q=s] /]X1,] /]Y1,] /]Z1,… ,] /]Xn,] /]Yn,] /]Znd,
q=sq1,¯ ,q3nd=sX1,Y1,Z1,… ,Xn,Yn,Znd are the Cartesian
coordinates of all atoms in the system withn atoms,dsqd
PR3n are the equilibrium positions defined for every mol-
ecule in the system by Eqs.s1d–s3d and sA1d–sA3d, and→
denotes substitution. The matrixJPR3n33n is the Jacobian
due to the change of coordinates. It is calculated numerically
by the finite difference method

Ji j =
disq1,q2,…,qj + h,…,q3nd − disq1,q2,…,qj − h,…,q3nd

2h
,

s69d

whereh is 0.001. Because the equilibrium positions of atoms
in a molecule depend only on the coordinates of atoms of the
same molecule, the JacobianJ is a sparse block diagonal
matrix.

For the same reasons as presented in Ref. 36 it is also
valid for the SISM-EQ that the components of the external
force Fnb in Eq. s68d are annihilated in the directions along
which the high-frequency molecular vibrations are excited.
This leads to weaker anharmonic interactions defined byVah

in Eq. s46d and consequently to enhanced stability of the
integrator. Another advantage of computing the potential of
the nonbonded forces with the equilibrium configuration of
the molecule is that the partial charges on the atoms in the
molecule, which are constant during MD simulation, are de-
termined only for the equilibrium configuration. The quan-
tum potential is different for all the other deformed configu-
rations of the molecule and therefore different partial charges
corresponding to these configurations should be used in MD

FIG. 4. Solution scheme for SISM-MTS.
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simulation. By computing the potential of the electrostatic
forces with the equilibrium positions instead of the actual
ones, this problem is circumvented.

The SISM-EQ is equivalent to the SISM defined by Eq.
s40d except that the modified electrostatic and Lennard-Jones
potential are used. The SISM-EQ therefore conserves

H = Tspd + Vvibsqd + Vnbfdsqdg. s70d

The SISM-EQ is similar to equilibrium MOLLYsRef.
36d except that there are some important differences. The
first difference is in the applied integration scheme for the
propagation of the coordinates and momenta of the atoms.
The SISM-EQ uses the integration scheme of the SISM de-
fined by Eq.s40d for the propagation of the coordinates and
momenta of the atoms whereas the equilibrium MOLLY uses
the scheme of the Verlet-I/r-RESPA method.12,13Another es-
sential difference is that in the SISM-EQ different positions
dsqd, which define the equilibrium positions of the atoms,
are used. In the equilibrium MOLLY the equilibrium posi-
tions dsqd are obtained by projecting the coordinates of the
atomsq onto the manifold in the configuration space defined
by the reference values of the bond lengths and bond
angles.36 This projection is performed by an iterative numeri-
cal procedure similar to SHAKE.9 On the contrary, in the
SISM-EQ Eqs.s1d–s3d andsA1d–sA3d are used to define the
equilibrium positions of atoms. This is more convenient be-
cause the equilibrium positions of atoms determined in this
way are in accordance with the standard theory of molecular
vibrations and no numerical iteration is required.

D. Equilibrium multiple time stepping SISM

Combining integration scheme the SISM-MTS given by
Eq. s66d and the SISM-EQ introduced in the preceding sec-
tion for the propagation of the coordinates and momenta of
atoms, leads to the SISM-MTS-EQ. We use the equilibrium
positionsdsqd defined by Eqs.s1d–s3d and sA1d–sA3d as in
the SISM-EQ method. This functiondsqd represents a new
averaging function to compute nonbonded potential energy.
It mollifies the impulse of the slow forces and thus together
with the SISM-MTS leads to the SISM-MTS-EQ integration
method.

IV. CONCLUSIONS

In the present work we combined the symplectic mo-
lecular dynamics integration and molecular vibrational
theory to derive a new efficient SISM for MD integration
and its variants.

An increase of efficiency of the newly developed inte-
gration methods in comparison with standard symplectic in-
tegration LFV method was achieved by the analytical treat-
ment of high-frequency motions using the normal mode
analysis, which is carried out once at the outset of a simula-
tion for an isolated molecule only. The method increases the
longest size of the integration time step from the size that is
determined by the high-frequency bond-stretching and angle-
bending interactions to the size that is determined by the van
der Waals and electrostatic interactions acting among par-
ticles in the system. These nonbonded interactions are in the

SISM treated numerically within the generalized leap-frog
scheme in the same way as in the LFV method.

The SISM differs from other similar integration methods
in that it uses the translating and rotating internal coordinate
system of each molecule in the system, which enables us to
perform the normal mode analysis only once, at the begin-
ning of the simulation. Since the SISM is symplectic and
symmetric it is time reversible. From the time reversibility
condition we derived the equations of motion for the dynam-
ics of the internal coordinate system of each molecule. This
dynamics represents the core of the method. With the intro-
duction of the translating and rotating internal coordinate
system we achieve that the displacements of the atoms from
the instantaneous equilibrium positions are always suffi-
ciently small and the theory of small vibrations can be ap-
plied. The coupled vibrations of atoms in molecules are de-
coupled using the normal coordinates, which are also used to
describe the translation and rotation of molecules.

We have also derived two improvements of the SISM,
which efficiently handle those high-frequency anharmonic
vibrational terms in the Hamiltonian that are integrated nu-
merically in the SISM. The SISM-MTS uses, for the numeri-
cal integration of high-frequency anharmonic vibration
terms, a shorter integration time step and for the dynamics,
which is generated by the electrostatic and van der Waals
interactions, a correspondingly longer time step. The equilib-
rium SISM sSISM-EQd uses a new averaging function, first
introduced here, to mollify the impulse of the slow forces
and the integration scheme of the introduced SISM to propa-
gate in phase space. The van der Waals and electrostatic
potential energies are calculated using the equilibrium posi-
tions of atoms, which are defined by the Eckart frame, in-
stead of in the actual positions of the atoms in a molecule. In
this way the components of intermolecular forces are elimi-
nated in the directions along which the high-frequency mo-
lecular vibrations are excited, which improves the stability of
the presented integration methods. Combining methods
SISM-MTS and SISM-EQ leads to the method SISM-
MTS-EQ with which the optimum enlargement of the inte-
gration time step was achieved.38,39
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APPENDIX A

The Eckart internal coordinate system31,32 is introduced
as follows: first we define a fixed Cartesian coordinate sys-
tem and denote the instantaneous position vectors ofN atoms
of a molecule of the system relative to its origin byr a, a
=1,2,… ,N.

The Eckart frame is then defined by the orthogonal right-
handed triad of unit vectorsf i, i =1, 2, 3, with the origin in
the center of mass of a molecule. The unit vectors are
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uniquely defined by the instantaneous positionsr a of atoms
in the molecule, by the masses of atomsma, and by the
constant equilibrium distances of the atoms from the mol-
ecule’s center of massci

a, i =1, 2, 3, defined by the static
molecular model32 and satisfyingoamaci

a=0. The internal
coordinate system can be attached to the equilibrium con-
figuration of a molecule in different ways, each of which
yields a different Eckart frame. Nevertheless, once we have
made a definite choice, the Eckart frame is defined in a
unique way.

The unit vectorsf1,f2, andf3 are determined from three
Eckart vectorsF1,F2, andF3, which are introduced as32

Fi = o
a

maci
ar a, sA1d

wherema is the mass of thea atom in the molecule. In the
example of nonlinear and nonplanar moleculesf i, i =1, 2, 3,
are computed as

sf1,f2,f3d = sF1,F2,F3d ·F−1/2, sA2d

whereF is a symmetric positive definite Gram matrix de-
fined as

F = 3F1 ·F1 F1 ·F2 F1 ·F3

F2 ·F1 F2 ·F2 F2 ·F3

F3 ·F1 F3 ·F2 F3 ·F3
4 . sA3d

F−1/2 is a positive definite matrix for whichF−1/2·F−1/2

=F−1 holds, whereF−1 is the positive definite inverse of
F.32

The vectorsf i, i =1, 2, 3, satisfy the Eckart conditions for
the orientation of the Eckart frame31,32

o
a

maca 3 ra = 0, sA4d

which state that there is no angular momentum with respect
to the internal coordinate system in the zeroth order of dis-
placements of the atoms from their equilibrium positions.22

In the example of planar molecules,c3
a=0 holds.

Therefore,32

sf1,f2d = sF1,F2d ·F−1/2, sA5d

f3 = f1 3 f2, sA6d

where3 denotes the vector product of two vectors andF is
a symmetric 232 matrix defined by

F = FF1 ·F1 F1 ·F2

F2 ·F1 F2 ·F2
G . sA7d

The example for linear molecules is described in Ref.
29.

APPENDIX B

Let the Eckart framef i, i =1, 2, 3, be located at the center
of mass of a moleculeR defined by the position vector

wa = R + ca + ra, a = 1,…,N, sB1d

where the equilibrium positions of atoms relative to the cen-
ter of mass of the molecule are given by the vectorsca de-
fined by Eq.s2d and the displacements of atoms from their
equilibrium positionsra fulfill the Eckart conditions in Eq.
sA4d,

o
a

maca 3 ra = 0. sB2d

Arbitrary position vectorr a, a=1,… ,N, with the same cen-
ter of massR defines the same Eckart frame aswa, a
=1,… ,N, only if it can be written as32

r a = R + ca + ha, sB3d

whereha are the displacements of atoms from the equilib-
rium positions in this changed configuration of the molecule
r a, a=1,… ,N, which also fulfill the Eckart conditions

o
a

maca 3 ha = 0. sB4d

From Eqs.sB1d andsB3d it follows that the position vectors
which define the same Eckart frame have the same equilib-
rium configuration, only the displacements are different.

Let wa, a=1,… ,N, define the predicted Eckart frame in
the middle of the integration step after the propagation by

exp(sDt /2dL̂H0
),

wa = r a0
+

Dt

2
va0

, sB5d

wherer a0
andva0

are the atom coordinates and velocities at
the beginning of the integration step, respectively. The posi-
tions wa, a=1,… ,N, can then be written in the formsB1d
with the displacementsra satisfying the Eckart conditions
sB2d.

The initial velocity can be split into the vibrational, ro-
tational, and translational part, respectively,

va0
= va0

vib + va0

rot + va0

trans. sB6d

The term va0

rot+va0

trans is the only part of the velocity that
moves the position of the equilibrium configuration of the
moleculesthe center of mass of the molecule is moving ac-
cording tova0

trans, the orientation of the molecule changes ac-
cording tova0

rotd. Since the velocityva0

rot+va0

trans is constant dur-

ing propagation by exp(sDt /2dL̂H0
) and the initial

coordinates and momenta of atoms at the beginning of the
integration step are also used in the predictionsB5d, the ac-
tual positions of atomsr a, a=1,… ,N, in the middle of the

integration step after the propagation by exp(sDt /2dL̂H0
) de-

termine the same equilibrium configuration of the molecule
R+ca aswa, a=1,… ,N. The positionsr a, a=1,… ,N, can
therefore be expressed in the formsB3d.

Next, ha is split as

ha = hav=0
+ havÞ0

, sB7d

wherehav=0
are the displacements of atoms from the equi-

librium positionsR+ca due to rotational and translational
motion, andhavÞ0

are the displacements due to vibrational
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motion. They are determined either using the normal coordi-
natessrotation and translation correspond to zero normal fre-
quencies and vibrations to nonzero normal frequenciesd or by
the condition

o
a

maca 3 havÞ0
= 0, sB8d

since vibration has no angular momentum because rotation
and vibration are decoupled by Eq.s28d.

Sincer a, a=1,… ,N, andwa, a=1,… ,N, describe the
positions of atoms with the same equilibrium positionsR
+ca,

hav=0
= 0 sB9d

holds in the middle of the integration step after the propaga-

tion by exp(sDt /2dL̂H0
). Then it follows that

o
a

maca 3 ha = o
a

maca 3 shav=0
+ havÞ0

d

= o
a

maca 3 havÞ0
= 0. sB10d

The predicted positionswa, a=1,… ,N, and the actual posi-
tions r a, a=1,… ,N, in the middle of the integration step

after the propagation by exp(sDt /2dL̂H0
) therefore define one

and the same Eckart frame.
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