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Molecular dynamics integration and molecular vibrational theory.
|. New symplectic integrators
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New symplectic integrators have been developed by combining molecular dynamics integration
with the standard theory of molecular vibrations to solve the Hamiltonian equations of motion. The
presented integrators analytically resolve the internal high-frequency molecular vibrations by
introducing a translating and rotating internal coordinate system of a molecule and calculating
normal modes of an isolated molecule only. The translation and rotation of a molecule are treated
as vibrational motions with the vibrational frequency zero. All types of motion are thus described in
terms of the normal coordinates. The method’s time reversibility requirement was used to determine
the equations of motion for internal coordinate system of a molecule. The calculation of long-range
forces is performed numerically within the generalized second-order leap-frog scheme, in the same
way as in standard second-order symplectic methods. The new methods for integrating classical
equations of motion using normal mode analysis allow us to use a long integration step and are
applicable to any system of molecules with one equilibrium configuratior2085 American
Institute of Physic§ DOI: 10.1063/1.18846Q7

I. INTRODUCTION spondingly shorter integration time steps as used for remain-

. . . ing low-frequency motion. The increase of the integration
The standard integrators for solving the classical equa- 9 9 Y 9

tions of motion are the second-order symplectic Ieap-frog('me step size is obtained by adding extra information about

Verlet (LFV) algorithml and its variants. Their power lies in htﬁ stgdled I||3r;y5|cal slystede\gF?f res?eict to tr;g It‘FV z;lgo-
their simplicity since the only required information about the "M, I.€., all ime scales and CUierent types of Interactions

. 421 :
studied physical system are its interacting potential and thd! the system must be,consmgﬂgd. Thus there is a 'Fradgj
time scale of the fastest motion in the system, which deter9]cf between a method’s simplicity and general applicability

mines the integration time step size. Therefore they are enj® different kinds of physical systentsFV algorithm) and a
ployed for solving dynamics problems in a variety of scien-_methOd s increased efficiency for a specific physical systems,
tific fields, e.g., molecular dynamic&VD) simulation?®  I-€- molecular systemg/erlet-1/r-RESPA. _
celestial mechanic® and accelator physidsHowever, in Another approach is the analytical treatment of high-
the case of MD integration, the integration time step size idrequency molecular vibrations, which requires the standard
severely limited due to the numerical treatment of the highth€ory of molecular vibratior#é to be built into the integra-
frequency molecular vibrations, which represent the fasteson method. In this way the fast degrees of freedom are
motion in the systerfi. Therefore a huge number of integra- "gorously tre_at%dzsand not removed, as in the case of rigid-
tion steps is usually required to accurately sample the phag¥dy dynamic$* where small molecules are treated as
space composed of all the coordinates and momenta of dilgid bodies. The first attempt in this direction was intro-
the particles. This is a time consuming task and is often togluced in Ref. 26 where an integration algorithm for MD
demanding for the capabilities of contemporary Computers.simulations of an isolated linear molecule using the splitting
One way of overcoming the limitation of the standard of the total Hamiltonian into the high-frequency harmonic
methods’ integration time step size is to freeze the highand low-frequency remaining part was presented. The high-
frequency motions using constraints as in SHAKE andfrequency molecular vibrations, which were described only
RATTLE.?® The problem of such an approach is that theby the harmonic bond stretching potential, were resolved
treatment of bonds as constraints prevents the generation apalytically using the normal coordinates. The method intro-
low-frequency modes from coupled vibrations and it alsoduced in Ref. 26 was extended in Refs. 27 and 28 to also
prevents the relaxation of vibrations under the influence ofreat systems of linear molecules. An important methodologi-
an external field! Also, the high-frequency peaks cannot be cal step in the development of this approach is presented in
reproduced in computed vibrational spectra. An alternativérRef. 29 where normal modes with frequency zero were first
way is to use multiple integration time stepping schemesysed for describing the rotation and translation of molecules.
e.g., Verlet-1/r-RESP, 213 where the high-frequency mo- In addition the angle bending term was also included for
lecular vibrations are numerically integrated with corre-analytical description of the vibrational motion. A study of
the system density dependence of the size of the maximal

JAuthor to whom correspondence should be addressed. Electronic maif'?lllowecj inteQra_tion tim? '_Step is pres_e_nt_ed in Re_f- 30-_HOW'
dusa@cmm.ki.si ever, the equations defining the equilibrium configuration of
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each molecule and its motion, which are the fundamental SISM
components of the described method, have not been pre- ) o ) .
d vet ¢ Analytical description of high—frequency motions
sente y_ : . *Moving internal coordinate system
A major goal of the present paper is to present a new +One step
semianalytical symplectic MD integration method split inte- *Symplectic
gration symplectic methodSISM), which combines the *Second order
. . . . *Time reversible
standard theory of molecular vibrations and MD integration.

The key feature in which the presented approach differs from /\

all other similar approaches for MD integration is the ana-

lytical description of coupled molecular vibrations, which is SISM-MTS SISM-EQ

possible only by using the normal coordin&feand a trans- As SISM except: As SISM except:

lating and rotating internal coordinate system of each multi—time step is used to anew averaging function
31,32 he d inti f | | ti in t efficiently treat the to compute non—bonded

molecule>™T e description of molecular motion in terms anharmonic contribution to | | potential energy is

of normal coordinates provided by the standard theory of the harmonic approxmation | | introduced

molecular vibrations is also extended to translation and rota-

tion, which are treated as vibration with zero normal mode \/

frequency. The presented MD integration methods are thus

the direct implementation of the standard theory of molecu- SISM_MTS_EQ

lar vibrations to calculate the MD trajectories of a molecular Combined SISM—MTS and SISM-EQ
. to achieve optimum enlargements

system, where all degrees of freedom are treated classically. of the integration time step

Similar approaches either apply the standard theory of mo-

lecular vibrations to analytically treat the quantum-

mechanical  intramolecular  vibrational degrees  of FIG. 1. New symplectic integrators.

33,34
freedom;>"" or do not use the standard theory of molecular”_ MOLECULAR MOTION CHARACTERIZED IN

vibrations, in particular, the concept pf E_ckart fraend NORMAL COORDINATES
can therefore treat the molecular vibrations only as one-

dimensional harmonic oscillators with a single high- ~ To describe the atoms’ motion in molecules by normal
frequency of oscillation and a fixed direction-in space, e.g.coordinates we have modified the dynamical molecular
NAPA 1214 model introduced in Ref. 32 for molecules with only one

Another goal is to describe two variants of the sisM. €quilibrium configuration and no internal rotation. Using this

First, the multiple time stepping SISNBISM-MTS) which appro_ach we are able to define the dynamic; of the in.ternal
besides an analytical treatment of high-frequency m0|ecu|a?00rd||n§te Isysttzm of a mlolecu_le and desclnbe v(;pratmnal,
vibrational motion uses also a shorter integration time Stelgran's;_atlona, an (;otatlon? rr:jotéon In norma %c?or Inates.
for the numerical integration of high-frequency anharmonic " wgtbwtehlntrothuce a le'eht hartz&gr; .Codor fmat.f systtem
vibration terms and a correspondingly longer time step fordei'gi 2y3 re1d0(ral ggfnﬁ nign t_ r?tnne na c;ti ur?lv vetcrorsf
the dynamics generated by the electrostatic and van d{?l’ L& od enote the instantaneous position Vectors o

. : S atoms of a molecule of the system relative to its origin by
Waals interactions. Second, the equilibrium SISBISM- _ i

. . oo . ro. «a=1,2,...,N as presented in Fig. 2. The molecule
EQ), which also treats high-frequency vibrations analytically . .

. ) . center-of-mass vectdR is defined as

but the van der Waals and electrostatic potential energies are
calculated from the equilibrium positions of atoms instead of  R=>, m,r /> m,. (1)
from the actual positions of the atoms in a molecule. In this a a
way a new averaging function, introduced here, is derived  \oyt e introduce the translating and rotating internal
from the standard theory of molecular vibrations, to mollify ~4rdinate system of the molecule, which is attached to the
the impulse of the electrostatic and van der Waals forces a$,gjecule and moves with it. In the standard theory of mo-
proposed in Refs. 35-37, which improves the stability of th@ecy|ar vibrationd? the Eckart framé*? defined in Appen-
presented integration methods. Combining the SISM-MTSjix A, is chosen to be the internal coordinate system. The
and SISM-EQ approaches leads to the equilibrium multiplezckart frame is the internal coordinate system where the cou-
time stepping SISMSISM-MTS-EQ method by which the  pling between the vibrational and rotational degrees of free-
optimum enlargement of the integration time step is achivedgom of a molecule is zero at equilibrium. In principle, one
~ Shematic presentation of the new symplectic integratorgan also choose an alternative reference frame for the inter-
is given in Fig. 1. These methods are applied in the accomnal coordinate system, as we propose in the present work.

; ,39 : : ; : Sy L. .
panying paper§* to various simulations of different sys- The equilibrium positions of atoms relative to the mol-
tems of molecules with one equilibrium configuration and noecule’s center of mass are then given by vectrs

internal rotation. The results indicate that the presented inte-

grators, due to the analytical treatment of high-frequency Cazzciafiv (2)
motions, allow considerably longer integration time steps '

than the standard LFV algorithm for the same computationalvhere the orthogonal right-handed triad of unit vectiors
accuracy and computational cost per integration step. =1, 2, 3 with the origin in the center of mass of a molecule

Downloaded 09 Aug 2005 to 194.95.63.241. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



174101-3 Molecular dynamics integration. | J. Chem. Phys. 122, 174101 (2005)
Q=" me, X (f,~R), (8)
a

whereJ’ e R3%3 is defined a®*

J=>mfr,~-R)-c,]l -(r,-R)®c,}. 9)

Here ® is a tensor product of two vectors defined Aasa
®b(Ax=ajb) and | € R>3 represents the identity matrix.
Note thatJ’ in the case of nonrigid molecules differs from
the tensor of a molecule’s instantaneous moment of in&tia.
The unit vectord;, i=1, 2, 3, of the Eckart frame vary ac-
cording to

f=Qxf, i=1,2,3. (10)

The kinetic energy can be, by virtue of EGA4), ex-
pressed &8

1 1.
T= 5%: mavi: ERZED; m,

FIG. 2. Atom displacements in a triatomic molecule in the Cartesian and the

internal coordinate system. + EE mJ[Q X (r,-R)]-[QX(r,-R)]
2 - al (23 (23
defines the internal coordinate system of the mole¢sée 1
Fig. 2. + 52 MeAvs + € - X My(py X AV,)
The equilibrium positions of atoms in the Cartesian co- “ “
ordinate system are given by = Tians® Trot T Tvib T Tcoriolis- (11
d,=R+¢c,. ©) The first term represents the translational energy of a mol-

ecule, the second rotational energy, the third vibrational en-
ergy, and the fourth one the coupling between rotation and
vibration—the Coriolis energy. Translation is completely

P.=r,—d,. (4) separated from the vibrational and rotational motion while

If the displacement vectors are written in terms of the inter-mtation and vibration are coupled.
P Using Eq.(6) we can write Eq(7) as

nal coordinate system, the relative Cartesian displacement

The displacement vectors of atoms from their equilib-
rium positions are therefore defined as

coordinates are dAx,, dAy,  dAz,
Ava: d 1+ d f2+ d f3:Avaxf1+Avayf2
Pa= (oD + (o T2+ (P - F)fs t ! t
= Ax,f1+ Ay, f,+ Az fs, (5) +Av, f3=(Av, - f)f; + (Av, - f)f; + (Av, - f)fs

wheref,,f,, andf; point alongx,y, andz directions of the ={[v, - R-Q % (r,=-R)]-fif +{lv,- R-Q
internal coordinate system, respectively. )

Using the internal coordinate system, the velocity of X (ry=R)]-folfa +{[ve-R-Q X (r,
each atom can be split into three pafs: “R)] - fafs. (12)

Vo=f,=R+Q X (r,—R)+Av, = Va4 0t Vb, From Eq.(12) follows that only the vibrational part of the

(6)  atom velocityAv,=vy" is expressed in terms of the relative

) Cartesian displacement coordinates and consequently in
where R is the center-of-mass velocity and represents théerms of normal coordinatés.
translational contribution2 X (r ,—R) is the contribution Alternatively, we can describe also rotation and transla-
due to rotation of the internal coordinate system, Ang is  tion of a molecule in terms of the normal coordinates. To do
the velocity of thea atom in the internal coordinate system so the whole atom velocity needs to be expressed in terms of
the relative Cartesian displacement coordinates

_dAx, ~dAy, ~dAz,
AVa— dt f1+ at f2+ at f3 (7) AVa:AUaxfﬁAvayfz‘*Avazfs
and represents the vibrational contribution. =(Av, - f)fy +(Av, - f)f + (Av, - f5)f3
The angular velocity) of the Eckart frame is obtained = (v O+ (V) t (V- F)f 13
by differentiating equation for Eckart conditions, Hé4), (Vo Ty + Vo Pl + (Ve - To)fs. (13
with respect to time From Egs.(6) and (13) follows
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AV =V = =R+ Q X (r,—R)+Av,, (14) nates change_by finite amounts due. to the 'Franslational and
rotational motion of molecules. By introducing the Eckart
which implies that frame for the internal coordinate system of a molecule, the
. problem of vibrational motion of a molecule can be consid-
R+Q X (r,~R)=0, (15 ered independently from its rotation and translafidblsing

the Eckart frame we can define equilibrium positions of the

and therefore ) . .
atoms in a molecule in such a way that the displacements of

R=0, (16) the atoms are sufficiently small, so that the normal mode
analysis can be applied.
Q=0. (17) In normal mode analysis, where it is assumed that

are sufficiently small, only quadratic terms are kept in the
Equation(16) requires the origin of the internal coordinate expansion(19) and all higher terms are neglect&d,
system to be at rest and from E@.7) follows thatf,=Q

Xf;=0,i=1, 2, 3. These conditions demand that the internal v 1% Vyip
coordinate system is fixedhe velocity in the internal coor- ib =~ Vharm= 22 \oAg aAq /4 AgiAg;
dinate system must be equal to the velocity in the Cartesian an an
coordinate systejn which means that the equilibrium con- 1 ( Vharm ) 1E H AGA
i i i = Am A QiAqg;
figuration of the molecule is also at rest, 2IJ =\ JAq; 3 Aq; 2% ijAdiaYy;
AV, =p,~ QX p,=p,=i,-d,=F,=v,0 d,=0. 1
=—-Aqg-H-Aq. 20
(19) >Ad q (20

It is important to emphasize that the dynamics of theygre
internal coordinate system obeying the conditi¢h6) and
(17) is different from the dynamics of the Eckart frarfsee T _( iy ) _( Viarm )
Eq. (8)], _wh|c_h is employed in the s_tandard theory of mo- 1T\ oAg dAg /o \dAg dAg;/
lecular vibrations. Due to the translational and rotational mo-
tion, the position of the center of mass as well as the orienare the elements of the Hessieine R33N, symmetric ma-
tation of a molecule change. The requiremei and(17)  trix of the second derivatives of the vibrational potential en-
reflect the change in understanding of the translational andrgy.
rotational motion of a molecule which are here treated as To determine the vibrational motions of the system, the
vibrations with zero frequency. The motion of the center ofeigenvalues and eigenvectors of the mass-weighted Hessian
mass and the orientation of a molecule are thus described By ~2-H-M 2 have to be calculated:*>~* This leads to
the equations of motion for the normal coordinates with fre-solving a secular equation
guency zero. 1o o

The vibrational potential energy can be expanded in a det(M ‘H-M™*-\I)=0, (22
power series of the relative displacements of atoms from
their equilibrium positions as

(21)

whereM e RN js a diagonal mass matrix. The diagonal
elements areMy;=my, My=my, Mgz=my,...,May_o av-2
SN MNyip =My, Man-1,av-1=My, May sn=my. For a nonlmear molecule
Vvib = VV|bO+E G AQ' composed oN atoms, 3-6 nonzero eigenvaluesy =\,
: provide the normal, or fundamental, frequencies of vibration

1 N PV and their associated eigenvectors, normal modes, give the
—E (M (;”A > AgAgj+ - directions and relative amplitudes of the atomic displace-
2ij=1 4 7RG /0 ments in each mode. Six of\Broots in the Eq(22) are zero.
3N 2 They correspond to three translations and three rotations of a
AN AN 2
= AgAgj+ -+, (199  molecule as a whol&.
2ij=1 \0Aq; 9 Aq; /o Once the normal modes and normal frequencies are de-

termined the normal coordinaté€y,, k=1,2,...,3N can be
introduced, which are in terms of the relative Cartesian dis-
Ag=(Agy,Ady,...,Alsy) placement coordinates defined by a linear orthogonal trans-
formation and represent independent degrees of freedom.
The columns of the transformational matéx between the

is a vector of the relative displacements of atoms from theinormal and relative Cartesian displacement coordirites,
equilibrium positions. We Se¥,ip,=0 and (V! IAQ)o=0

where

= (Axq,Ayy,A74, ..., AXN, Ay, AZy)

3N
because there are no forces acting on atoms in the equilib- v
. " = IMiAAg;, k=1,2,...,3N 2
rium positions?? Qx z VM;iAjAg;, ,2,...,3N, (23)

The standard theory of molecular vibrations considers
only motions in which all coordinates vary by infinitesimal are the eigenvectors ofl "%/2.H-M %2,
amounts. In molecular systems, however, the atoms’ coordi- The equations of motion for the normal coordinates are
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. e 3N
Qc+ MQ= Q+ w2Q=0, k=1,2,...,3N (24) 1o }2 P2

30
el (30

and hold only for positivan,.?

3N-6 normal coordinates, which corresponddp>0,  which already takes the Hamiltonian form, as opposed to Eq.
describe molecular vibrations. The remaining six normal co(11), since it is expressed with momenta only. This is an
ordinates describing three translations and rotations of a molmportant fact for the application of Hamilton mechaffds
ecule are introduced in such a way that the conditions remD simulation where the Hamiltonian of the system must be

quired to define the Eckart frame can be writteffas expressed as a function of generalized coordinates and their
: conjugate momenta, and not as a function of coordinates and
=0, =0, k=3N-5,..,3N. (25  velocities?®

Using Eq.(29), the equations of motioii24) take the

The Eckart frame is therefore the internal coordinate SySte"Hamiltonian form as

which determines such equilibrium positions of atoms that

their displacements are zero in the normal modes with da_ _ 5 d_ _
=0 that describe rotational and translational motions of a dth— i Qs dtQk_ P k=1,2,..,3N. (31
molecule. . . . . .
The momenturP, conjugate to the normal coordinate The general solution of this Hamilton system of equations is
Qy is defined as Qu(t) = A sin(wyt + &), (32
oT -
Pe=—"=Qc+f(my,....my,Q1,...,Q3n-6€2), (26) P(t) = oA codart + &), (33)
IQk

whereA, ande, are the amplitude and the vibrational phase
where f(my,...,My, Q1. ..., Qanes, Q) #0 is a function of determined from the initial value®,(0) and P,(0), respec-
Q,m, a=1,...,N, andQ,, k=1,...,3N-6 and stems from tively.

the coupling between rotational and vibrational degrees of 2 The particular solution of the systef81) can be written

freedom?? a
In accordance with Eq.12) {Pk(t) ] | codmd) - wsin() [Pk(O) } a0
N N Qu(t) +sinlod) codwd) |[QUO) |
2Tyip = 2 MAV% =2 QF= X QF. , , L . .
a=1 k=1 k=1 Equation(34) describes vibrational motion corresponding to

o the normal modé with w, > 0.
In the standard theory of molecular vibrations the transla-  sjpce here the internal coordinate system is not equal to

tional and rotational degrees of freedom are described_by thihe Eckart frame, which is not fixed at any time, the require-

equations of motion for the center of mas®  mentsQ=0 and Q=0 for the normal coordinates corre-
=3,M,V,/Z,m, and orientation of a molecule, EQLO). As  sponding tow,=0 given by Eq(25) are no longer valid. The
it turns out this kind of approach is very difficult to imple- equations of motion for the translation and rotation of a mol-
ment in an integration method for MD simulatfd®due to  ecyle in terms of the normal coordinates, obtained from Eq.

the Coriolis coupling between rotation and vibration. (34) for the normal coordinates withw,=0 and using
Alternatively, we use Eq(13) for the velocity transfor-  jim _ (sinx/x)=1, are

mation. The total kinetic energy of a molecule can then be in

terms of the normal coordinates written as Pi(t) = P(0), (35
3N -
1 1 14 - Q1) = P (0)t + Q(0). (36)
T=22mye =22 mAvs=>3 Q. (28) . o . .
2%, 27 25 Since rotation is described by E@6) in the same way

as translation, it follows that E¢36) cannot be used for the
In this sum, as opposed to Ed41) and(27), also included  description of rotation of a molecule for infinitely long times
are the normal coordinates with,=0 for which Qy is, in t. Equationg34) and(36) hold only for finite time intervals.
general, nonzero. In this case the momentum conjugate to tHa the integration method for MD simulation, in which Egs.

normal coordinate&), is (34) and (36) are used for the propagation of the normal
coordinates, the internal coordinate system cannot be fixed,
P.= f7_T - 'Qk_ (29) but must be moved at least once per integration step so that
9Q, Eq. (36) can be used to describe both the rotation and trans-

lation of a molecule. At the same time the internal coordinate
The expressior(29) differs from Eq.(26), where only the system of a molecule must be fixed at that point in the algo-
vibrational part of the velocity is expressed in terms of therithm where Eqs(34) and(36) are applied, so that Eq413)
normal coordinates, in that there is no coupling term betweeholds for the transformation of the velocity.

rotation and vibration. Expressing the total velocity in terms of the normal co-
The total kinetic energy can now be written in terms of ordinates simplifies the treatment of vibrational and rota-
Py as tional degrees of freedom. In ER8), the problem of cou-
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pling between vibration and rotation is avoided since they pi2 1 , 1 )
are decoupled, which is not the case in Exf). Also, there H= 2 om o 2 kp(b =) *5 > k(060
are no system forces present in the internal coordinate sys- : bonds angles

tem because it is fixed during the propagation of the normal
coordinates by Eq$34) and(36). This greatly simplifies the
transformations between Cartesian and relative Cartesian dis-
placement coordinates. Thus the description of all degrees of S 48..“51)12_ (zl)e]
freedom of a molecule in terms of the normal coordinates, 5 rij '
which we have used in our MD integration approach, is more

convenient for the development of a new integration methogJNherei andj run over all atomsm is the mass of théth
for MD simulation than the standard approach in which only tom, p; is the linear momentum of thigh atom, b, and @
» Mi (a0} 0

vibrational degrees of freedom are treated with the normazre reference values for bond lengths and angles, respec-

coordinates. tively, k, andk, are corresponding force constantg,are the
reference values for the torsion angles, afycare the corre-
sponding barrier heightsg denotes the charge on thith
. NEW SYMPLECTIC INTEGRATORS atom, € is the dielectric constant in vacuum; is the dis-
. . . tance between thi¢gh andjth atoms, and:;; and oj; are the
The new symplect!c methods.for MD mtegratlon are de'corresponding constants of the Lennard-Jones potential.
veloped b_y implementing the derived dynamlcs qf the Inter- - The Hamiltonian(41) is a typical MD Hamiltonian that
nal coordinate system of a molecule into MD Integration jescripes a system of molecules with only one equilibrium
scheme. . ) configuration and no internal rotation. We assume that the
In MD S|ml_JIat|ons for each atom of the system the height of the barrier of the torsional potential is large enough
Hamilton equations are solved that the motion of atoms in the vicinity of the minimum of
dny - the torsional potential can be treated as a harmonic vibration
dat ={mH}=Lun, (37) around the equilibrium configuration. The vibrational poten-
. tial energy defined by Ed19) for an individual molecule, is
whereLy, is the Lie operator,} is the Poisson brackétand  therefore the sum of vibrational potential energies of all the
n=(q,p) is a vector of the coordinates of all the particles molecules in the system,
and their conjugate momenta.

1 e
+= 3 Volcosd—cosg?+ S
2torsions i>] 477"EOrij

(41)

P> ij

The formal solution of the Hamiltonian syste(®7) can m 1 1
be written in terms of Lie operators as Viib= 2 Vuin, == 2 ky(b=bo)2+ = > ky(6- 6)?
~ i'=1 ! 2bonds angles
77|tk+At = exp(AtLy) 7]|tkv (38) 1
= _ 2
and represents the exact time evolution of a trajectory in +5 2 Vo(cose - cosy)?, (42)

. =
phase space composed of coordinates and momenta of all the orsions

particles fromt, to t,+At, whereAt is the integration time , L ) )
step? whereV\,ibj, is the vibrational potential energy of théth
molecule.
The pure harmonic HamiltoniaH, in the splitting(39)
A. Split integration symplectic method is defingd as the sum of vibrational energies of all the mol-
' ecules in the system,

The first step in the development of a new symplectic

integration method is to split the Hamiltoni&hof a system m
into two parts’>?’ Ho=T+Viam= 2 (Tjs * Vharm, ) (43)
H=Hy+H,, (39) =t
whereH, is the part of the Hamiltonian that can be SO|VedWhereT:EipiZ/Zmi is the kinetic energy of all the atoms in
analytically andH, is the remaining part. the systemT;, is the kinetic energy of thg’th molecule,
Next, a second-order approximation for Eg8), known V. is the harmonic vibrational potential energy, which is
as the generalized leap-frog schefhié& is used for an individual molecule defined by E(R0), Vg, is the
At ~ - At~ corresponding harmonic vibrational potential energy of the
., = eXF(?LH())eXF)(AtLH,)eXP(ELHo) 7, j’th molecule, andn is the number of all the molecules in
the system.
+0(AtY), (40) The remaining part of the Hamiltonian,
which defines the SISM. The whole integration time step
combines the analytical evolution ¢, with a correction Hy=H-Hg=Vppt Van, (44)
from H, resolved by numerical integration.
The model Hamiltonian has the following form: is then equal to the sum of the nonbonded potential energy
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_ 12 [ \6 3
anzziej—+z48ij|:<ﬂl> _(ﬂ> :| (45) Axa:pa'flz( a_X_ECiafix>flx
i=1

i~ 4meli iz rij Fij
and the anharmonic vibrational potential energy of higher 8
terms (cubic, quartic, etg.in terms of displacements of at- + Ya—Y—E CiafiY f1Y
i=1

oms from their equilibrium positions

3
Van=Vvib = Vharm: (46) + (Z -7 E cf; )fl
@ . z| Z’
The underlying principle to enable the SISM to permit =1
longer integration time steps lies in the analytical treatment 3
of high-frequency vibrations described bly. The propaga- _ _ v @
tion schemd40) enables us to treat the time evolution of the AYa=Pa-T2= | X=X 21 ai'fiy ) T2,
vibrational, rotational, and translational degrees of freedom

~ 3
of each moleculddescribed by ex@At/2)L,, )] indepen- v @
. 0 +H Y- Y =2 et |fa
dently of all other molecules in the system because the total i Y)Y
intermolecular interactions are described by a seperate term 3
exp(AtLy, ). Each molecule is treated as an isolated molecule + (Za_ z-> Ciafiz)fzz, (49)
when propagating by exp\t/2)L, ). Propagation by i=1
exp((At/Z)LHp) can therefore be sglved gnalytically using the 3
theory_descrlbed in previous section. Since the normal mode Az, =p, fs= X, -X-D cf, |fs
analysis has to be carried out only once at the outset of the it )X
simulation for an isolated molecule only, a translating and
rotating internal coordinate system of a molecule must be +
defined. For the introduced internal system of a molecule the
model described in previous section was incorporated into 3
the SISM. o
The description of time evolution of the rotational and * (Za_ Z- 21 G fiz) fa,-
translational degrees of freedom of a molecule in terms of
the normal coordinates with vibrational frequency zéao Back transformation from the relative Cartesian displace-
=0) is closely related to the introduction of the moving and ment coordinates to Cartesian coordinates is given by
rotating internal coordinate system of a molecule. Therefore | _ 4 +p (50)
the total linear momentum of every atom in a molecule is ~~ “ "¢
expressed in terms of the normal coordinates, so that Eq#) Which

3
Yo-Y-2 cf'fiy) fs,
i=1

(34)—(36) hold for every molecule in the system. . Pu=AX 1+ Ay fo+ Az f3= (AX,fy + Ay, f,
The transformations between Cartesian, relative Carte- X %
sian, and normal coordinates of a molecule in the system +Azaf3x)e1+(Axafly+Ayafzy+Azaf3y)e2

used here are as follows. Let i=1, 2, 3,e;-6.=9 be the

unit vectors of the Cartesian coordinate system. The transfor-
mation from the Cartesian coordinat®s,Y,,Z,, wherer ,
=X.e1+tY e+Z,e; andR=Xe, +Ye,+Ze;, to relative Carte-
sian displacement coordinatdsx,,Ay,,Az, is given by Eq.
(5), where the displacements of the atoms from their equilib-
rium positionsp,, and the unit vectors of the internal coordi-

+ (A, fy, + Ay, fo +AZ,f3 )es. (51)

For each separate component, E&0)) can be written as
3

Xo=X+ 2 ¢y +Ax,fy +Ay,fp +Az,f5
i=1

nate systenf;, i=1, 2, 3 are expressed in terms of the Car- 3
tesian coordinates Y, =Y+ 2 CiafiY + AXale + Ayasz + Azast’ (52)
fi = fixel + fiYez + fizeg, i= 1,2,3, (47) =t
3
3 3 Z,=Z+ >, ¢+ Ax fr + Ay, f, +Az,f4 .
pa:(XQ—X—Zc?fiX)eﬁ<YQ—Y—ch'fiy)e2 o z z z
i=1 i=1

5 Using Eq.(13) wheref;, i=1, 2, 3, andv, are expressed
S cof 8 in terms of their components in the Cartesian coordinate sys-
t\ZamZ- - Ci'Ti ) €s- (48) tem as in the case of transformation of coordinates, the trans-
formation of momenta takes the following form:
The subscriptX,Y,Z denotex,y,z components of Cartesian AD. =D -fi=p. f +p. f. +p. f
coordinate system, respectively. By virtue of E¢$7) and Pa, = Pa 117 Pay 1, ™ Payl1y ¥ P10

(48) the relative Cartesian displacement coordinates are ex- B fop ¢ ¢
pressed as Apay_ Pa T2= Pay T2, + Pa, T2, * Pa,l2,
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AP, =Pa 3= Pa,f3, + P, f3, + Pa,fa,, (53 exp((At/2)Ly ). We should note that the internal coordinate
system is not equal to the Eckart frame, which also changes
during the propagation by e((m&t/Z)I:HO) according to Eq.
e(10). Therefore, equations of motion for the internal coordi-
nate system cannot be derived simply by discretization of
Eq. (10). It is crucial in the development of the new method
to derive the equations of motion that describe the dynamics
Pa=APgf1+ APy fo+ Apgfa= (Apg f1, +Ap, fo, of the internal coordinate system of a molecule. Note that for
+Ap. f (A f. +Ap. f. +Ap. f symmetry reasons, different molecular configurations can be
Pe,f3 )8+ (AP 1, Pay T2, AP, 3,8 related to the same equilibrium configuration and conse-
+(Ap, fr +Ap, fo +Ap, f3)es. (54)  quently to the same Eckart frame. Therefore, our internal
Xz y -z 2z coordinate system can be derived by means of Egs.
Transformation from the relative Cartesian displacementA1)—(A3) from some arbitrary configuration,. To remove
coordinates to the normal coordinates is given by @8)  the arbitrariness ofv, we need an extra condition.

wherep,=m,v, is the linear momentunp ,=pPa, &1+ P, €2
+paze3'

Back transformation of momenta is the same as in th
case of the transformation of the coordinates given by Eq
(51) as

with the help of Eq(29) as Because the SISM is symplectic and symmetric it is time
3N reversible? According to the identity espressing the time re-
Q=> v’MTA,Aq, (55)  versibility condition
i=1 ~ ~
I exp(— AtLy)exp(AtLy) =1, (59
3N
1 wherel is the identity matrix, all equations defining the new
P=> ——AjAp;, (56) y d g

i=1 VM;; integration method must be time reversible. Since the action
of the propagator e>(pAt/2)LHO) depends on the internal
coordinate system the dynamics of the internal coordinate
Ag=(Agy,Aqy,...,Aqy) system must be also time reversible. So, if at the end of a
given integration step, the direction of time is reversed, then
the second propagator e(;(pt/Z)I:HO) in the current integra-

is a vector of relative Cartesian displacement coordinates a%n step and the first propagator Q&MUZ)I:H ) in the sub-
. . .
their corresponding momenta are sequent integration step must satisfy the condition

Ap = (Apy,Apy, ..., Apsy) At ~ At ~
= (AplquplyuAplzv rApleApNyiApNz) ex;{_ ?LH()) eX[<ELHO> =l (60)

where

= (AXq,Ayq,AZ74, ..., AXN, Ay, AZY)

=(mlAle,mlAvly,mlAvlz,...,mNAvNX,mNAvNy,mNAvNZ) Therefore, Eq.(60) represents a strong restriction to the
choice of the dynamics of the internal coordinate system,

Thle subg_cn[?[ty,ygt( denotex,ylt_z clomponents of the inter- which enables us to combine symplectic MD integration and
na (I;oork ina efsys em, r?spec r|1ve y: | di h molecular vibrational theory.
ack transformation from the normal coordinates to the o linear momentum  p=(py, P, .-, Payy)

relative Cartesian displacement coordinates is given by =(py.p by of a given molecule withN atoms can be
- 1k7 zk,..., Nk

1 N split into a vibrational, rotational, and translational contribu-
Agi = \_‘J—E AiQ, (57) tion as in Eq.(6)
M 1=1 ,
PP+ P PR, (61)
3N
Ap, = \,M_HE AP, (58) Wherep‘lﬁ'b is the vibrational partp[® is the rotational part,
I=1 and py®™is the translational part of the linear momentum,

respectively. From the dynamics governed by the normal
modes corresponding to vibrational frequency zese0) as
_ _ _ described by Eqg35) and(36) it follows thatp[*'+py2"is a
1. Dynamics of internal coordinate system constant of motion during the propagation by
The internal coordinate system of a molecule changesxp((Atlz)LHo)_ Only this part of the linear momentum
with time because the rotation of a molecule changes thehanges the equilibrium configuration of a molecfites ro-
orientation of the internal coordinate system while the transtational part changes the orientation, the translational part
lational motion of a molecule shifts its origin. As follows moves the origin of the internal coordinate systemhereas
from derivation of Eqs(13—(18), the conditions(16) and  the vibrational part of the linear momentum determines only
(17) require the internal coordinate system of a molecule tahe displacements of atoms from their equilibrium positions.
remain fixed during the propagation by éé«pt/Z)LHo). As a If the initial coordinates qk=(Q1k,q2k, ’q3Nk)
consequence the explicit form of the internal coordinate sysz(rlk,rzk, ,rNk) and the initial momenta, of atoms from
tem is required only while transforming between normal andhe beginning of thekth integration step are used to deter-
Cartesian coordinates before and after the propagation hyine the coordinatew, as

since the transformation matriX is orthogonal.
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At - At
W =g+ Mt Py =0kt M~ (py° +pt+ pgan3?,
(62

then coordinatesy, define the same internal coordinate sys-
tem of a molecule as the actual atoms’ coordinates in the
middle of the integration step after the propagation by

exp((At/Z)ﬂHO). The formal proof is given in Appendix B.  (2)
If the internal coordinate system is changed at the begin-
ning of thekth integration step using the prediction in Eg.
(62) and the direction of time is reversed at the end ofkie
integration step then the same internal coordinate system of a
molecule is predicted in the beginning of the+ 1)th inte-  (3)
gration step, as it was used in tkil integration step because
the coordinates of atoms do not change during the propaga-

tion by exgAtLy ). This means that the new internal coordi- (4)
nate system of a molecule is equal to the old one if the
direction of time is reversed. The time reversibility condition

of Eq. (60) is thus satisfied by our method. The internal (5)
coordinate system of a molecule remains fixed over the
whole integration step and only changes at the beginning of
each integration step.

The prediction, Eq.(62), yields the exact equilibrium
configuration of a molecule halfway through the integration
time step. This fact leads to two important consequences.
First, the error of the method remains of the or@¥nt3)
because there is no additional approximation involved. Sec-
ond, the internal coordinate system of the molecule move%G)
with the molecule(the equilibrium positions are related via
Eckart conditions to the actual atomistic positippsoviding
that the displacements of the atoms are always kept small %)
that the anharmonic part of the vibrational potential energy is
always much smaller than the harmonic one and our normal
mode approach is justified. ®

2. Algorithm

The algorithm employed for the SISM defined by Eq.
(40), for each molecule in the system, consists of nine steps
given below. C)

(0) Initialization: At the outset of a simulation the vibra-
tional frequencies and normal mode vectors of the

mass-weighted Hessian=2.H -M Y2 whereH is de-

J. Chem. Phys. 122, 174101 (2005)

R is used for transformations between different coordi-
nate sets until the next move of the internal coordinate
systen]. Then the relative Cartesian displacement coor-
dinatesAq,Apy are obtained fronqy,p, using Egs.
(49) and (53). The normal coordinatesQik,Pik, i
=1,...,3N, at the beginning of the current integration
step are determined using E¢S5) and (56).
Propagation by e>(|()At/2)LH0). Rotation ofQ; ,P;, i
=1,...,3N, in phase space by corresponding vibrational
frequencyw; for At/2 to obtainQi’k,Pi’k, i=1,...,3N,
using Eq.(34) for vibration (w; # 0) and Eqs(35) and
(36) for translation and rotatiofw;=0).
Transformation of the normal coordinatég’k,Pi’k, [
=1,...,3N, to the relative Cartesian displacement coor-
dinatesAq,,Ap,, using Eqs(57) and(58).
Transformation of the relative Cartesian displacement
coordinates Aq,,Ap, to the Cartesian coordinates
Oy, Py using Egs(52) and (54).
Evolution by expAtLy ). The numerical integration of
momenta(force calculation

oH
Pk =Py~ Atg—qr,
where d/dq=(d/dq4,9/ 9y, ...,3/dqs,) and n is the
number of all atoms in the system. Sineg is the
function of coordinatesgH,/dp=0, only momenta are
changed in this stefry, ;).
Back transformation from the Cartesian coordinates
Ox.Px to the relative Cartesian displacement coordi-
natesAqy,Apy using Eqs(49 and(53).
Back transformation from the relative Cartesian dis-
placement coordinatesq,,Apy to the normal coordi-
natesQ{’,Pi”k, i=1,...,3N, using Egs(55) and (56).

k -
Propagation by e>(|()At/2)LHO). Again, rotation of the
normal coordinates in phase space kir2 to obtain
Q{’k’,P{L’, i=1,...,3N, using Eq.(34) for vibration (w;
#0) and Eqs(35) and(36) for translation and rotation
(wi=0).

Use Eqgs(57), (58), (52), and(54) to obtainQ.1, Pks1-
Go to (1) until the desired number of integration steps
is reached.

The above equations hold for every atom in a molecule

fined by Eq.(21) for an isolated molecule only, are ang for every molecule in the system where the poteMigl

computed. Also the transformational matAxbetween

in Eq. (44) is the only function that depends on all the coor-

the relative Cartesian displacement and normal coordiginates of all the atoms in the system not only on the coor-

nates is determined. The columns Afare the eigen-
vectors ofMY2.H-M~2,
Definition of moving and rotating internal coordinate

)

dinates of atoms in a single molecule. The SISM is schemati-
cally presented in Fig. 3.
Due to the introduction of the translating and rotating

system: The internal coordinate system of a molecule isnternal coordinate system of a molecule, the Hesblate-

defined by Eqs(1) and (A1)—(A3) in which the coor-

fined by Eq.(21) is diagonalized only once at the beginning

dinatesw, from the prediction(62) are inserted as the of g simulation, in steff0). It was assumed that molecules
coordinates of the atoms in the molecule. The coordihaye only one equilibrium configuration and no internal ro-
natesw determine such configuration of the molecule tation. Since the displacements of atoms from their moving
that has the same Eckart frame as the true configuratiogqui”brium positions are always sufficiently small, E80)

of the same molecule in the middle of thg current inte-polds at any moment. Therefore the Hessindefined by
gration step during the evolution by e(mLHr) [inac- Eg.(21), is the same constant matrix for the entire simula-
cordance with Eq(16) the same center-of-mass vector tion.
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Definition of the dinates, and because E®4) is used in the propagation by

Internal Coordinate System exp((At/ 2)I:Ho), the information about the amplitude and the
Cmcs‘a“(l:”’dmates vibrational phase of atoms in each normal mode is com-
pletely conserved Since the total vibrational potential en-

1
[Rel. Displ. Coordinates | ergy Vi, is not the quadratic function of relative Cartesian
""""""" jmm - m--- E displacement coordinates the high-frequency anharmonic
At/2 Propagation with H, % terms collected inV,, remain in H,. Despite thatVg,
Normal Coordinates g <Vhamthe termV,, may not be neglected. The potentigl,
gl--- | ° couples the normal modes of a molecule and thus enables the
e [Rel. Displ. Coordinates | flow of the energy between them. A molecular system could
% i not reach thermostatic equilibrium at all in the absence of the
=l At | Propagation with H, = H, (q) electrostatic and van der Waals interactions if the t¥gis
3 artesian Coordinates neglected. Therefore not only the harmonic but all terms in
gl--- | the expansion by Eq19) of V,;, are taken into account in
& [Rel. Displ. Coordinates | the SISM. For this reason the SISM could be also applied,

- already at this stage of development, to MD simulation of
Propagation with H, molecules with more than one equilibrium configuration
t/2 pag ) . . 56 . .

Normal Coordinates and/or internal rotations:™” However, in this case due to
.............  ——————— the substantial anharmonic tei, the integration time step
size could not be longer than the corresponding integration

. time step size of the LFV algorithm and no speed-up over the
Cartesian Coordinates | LFV is gained in this case.

| Rel. Displ. Coordinates |
T

FIG. 3. Solution scheme for SISM. ] ) )
B. Multiple time stepping SISM

The translational and rotational motions of a molecule The anharmonic potential,, defined by Eq(46) is the

are described in terms of the normal coordinates. Equatlon;%nly t:i%h frequency”term int;he glaérlrc/iltor_:_ignl)l that ij:’ irr'l' h
(35) and (36) are equal for both motions which means that egrated numerically inthe € largest high-
the rotation is numerically integrated. Equatiof®5) and frequency contribution m‘_/ah comes from the anharmonlc_
(36) are therefore valid only for somét that is determined terms of the bond-stretching potential. To overcome the dif-

ficulties caused by the troublesorvig, term, we use a simi-
by the amplitude of displacements of atoms from the equi-
librium so that Eq.20) holds, lar approach as the Verlet-1/r-RESPA methfotf except that

The proposed integration method differs from all other Ve Use different splitting of the Hamiltonian and analytically

integration schemes for MD simulati&t® in that the rota- resoll\i/resttwehsarlri??gécﬁ:ﬁiﬁg:ig:_l'f;i?iﬁgcg mEo tl(cilnli'as
tional and translational degrees of freedom are described in P yEq

terms of the normal coordinates and the translating and ro- H=H;+H,, (63)
tating internal coordinate system of a molecule is introduced.
In the presented method the high-frequency harmonic mo- Hj =V, (64)
tions that stem from molecular vibrations are treated analyti-
cally, which enables the SISM to use longer integration time ~ Hy=Hg+ Vg, (65)

steps. The time consuming numerical calculation of non- .\ nich Ho is defined by Eq(43), the potential/ is de-

bonded force, performed by the propagator(@tpH IS fined by Eq.(45), andV,, by Eq. (46).

Eﬁ(‘;or’]”'rﬁd Igltshla same wa%/ tas mtthe standa;d m‘fltthOdf €.9., Using Strang splitting40), the following approximation
. e 's computation time per integration time "

step is therefore approxFi)mater the sa[:ne as i?\ the standaFgr the propagator exptLy)

methods and the SISM’s _speed—gp over the standard methods exp(AtIA_ )= eXp(gL )

is due to longer allowed integration time steps. H Vi

The molecular vibrations can be considered as the forced n
vibration with the electrostatic and van der Waals interac- x{ p(étLH )exp(ﬁtLV r)eXp< &LH )}
tions playing the role of the external driving force. The SISM 2
adiabatically couples the high-frequency vibrations of atoms .
in a molecule to the slow degrees of freedom in the system. XeXP<—|-vnb) +0(At%), (66)

The propagator e>(|AtLH) changes the momenta of atoms

on account of electrostatic, van der Waals, and anharmoni§ used to derive the SISM-MTS. Het¥ is the integration
interactions determined by, defined by Eq(46). The vi-  time step andst= At/n is the smaller integration time step
brational phase, in every normal mode of the molecular that corresponds to the time scale of high- frequency interac-
vibration is changed accordingly. The changed momenta antions defined by,, The propagation by e>(()5t/2)LH S is
displacements of atoms are transformed to the normal cooperformed analytically using Eq&34)—(36) in the same way
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steps as in the SISM-MTS because the coordinates of atoms

P{:gg:igit'cgrmg‘esvﬂb remain unchanged during the propagation by (Apor).
Since the total kinetic energyis included inH, the propa-
l gator ex;Q(At/Z)LHO) is the only propagator that moves the
Intmg‘;ﬁé‘;f;’gh‘l’zt‘:gystm coordinajtes in the SISM. Further splitting of é&pliHr) into .
Cartesian Coordinates smaller time steps is senseless because the forces remain the
same. At the same time the problem of resonances that are
Rel. Displ. Coordinates induced by the fastest normal modes of molecular
| vibrations’ cannot be avoided even in the case of the SISM-
- - g MTS. However, we can apply the idea of the mollified im-
Propagation with H, | (& pulse methot?>" (MOLLY) in which the potential of the
a Normal Coordinates 3 =| . .
g 5L slow forces is computed at time averaged values of atom
= i i 3 positions. In this way the components of slow forces, i.e., the
£ [Rel. Displ. Coordinates | & electrostatic and van der Waals forces, are filtered out in the
ﬁ T directions that excite the molecular vibrations generated by
§ St Propagation with V,, the fast forces, i.e., the forces determined by the bond-
g Cartesian Coordinates stretching and angle-bending potential that are susceptible to
al---- | resonances.
[Rel. Displ. Coordinates | The procedure in the SISM-EQ is that the potential of
nonbonded forces is computed from the equilibrium posi-
Propagation with H tions and that the corresponding force is multiplied by the
Normal Coordinates corresponding Jacobian as follows:
------------ [[--------- Vip(@) — Vi d(@)], (67)
Rel. Displ. Coordinates
Fnb(q) - JT ’ Fnb[d(Q)]r (68)
Propagation with V,j, whereV,,;, is the sum of Coulomb and van der Waals poten-
Cartesian Coordinates tials given by Eq.(45), F,=—dV,,/dq is the corresponding
--- force, a/9q=(91 Xy, Y1, IZy, ...,0l IXy, 9l Yy, Il IZy),
FIG. 4. Solution scheme for SISM-MTS. q=(dy, ", 03n) =(Xy,Y1,2y, ..., Xy, Yy, Zy) are the Cartesian

coordinates of all atoms in the system withatoms,d(q)
as in the SISM described in the preceding section. The- i are the equilibrium positions defined for every mol-
SISM-MTS is schematically shown in Fig. 4. ecule in the system by Eq&l)<3) and (A1)~(A3), and —

H 7 P 3nX3n ; i
The positionsw,, which are used to determine the new geno'{eShSUtht'tUt'Onf- ThedmatrﬂelR' | lslthedJacob@n ”
translating and rotating internal coordinate system of a molbuer:0 ;E ec ;Pfge ot coor |rr]1a(;es. tis calculated numerically
ecule, are predicted using E@?2), in which positions and y the finite difference metho

momenta after the first propagation by &t/2)Ly, ) are - _Gi(91,9, .9+ h, ..., 030) ~ di(G1,Gp, -, Gy~ h, .. Gan)
inserted instead of the initia, and p, at the beginning of "~ 2h ’

the integration step. In Eq62) the integration time stept (69)

is substituted byt. In the SISM-MTS the internal coordinate

system is thus moved times per integration step. whereh is 0.001. Because the equilibrium positions of atoms

The difference between the SISM-MTS and Verlet-I/r- in a molecule depend only on the coordinates of atoms of the
RESPA is in the different splitting of the Hamiltonian and in same molecule, the Jacobigi is a sparse block diagonal
the analytical propagation by ei@st/ 2)I:H0) using Eqs. Mmatrix. _ o
(34)—(36) in the SISM-MTS. In the scheme defined by Eq. _For the same reasons as presented in Ref. 36 it is also
(66) the nonbonded forces are calculated only once per inteZalid for the SISM-EQ that the components of the external
gration step and the intramolecular linear forces are calcuforce Fny in Eq. (68) are annihilated in the directions along
lated n times per integration step. Since this calculation isWhich the high-frequency molecular vibrations are excited.
much less time demanding than the calculation of long-rangdis 1eads to weaker anharmonic interactions definety
forces,dt=At/n can be chosen as small as is required for ar? Ed. (46) and consequently to enhanced stability of the

accurate sampling of the motion generated by the highi_ntegrator. Another advantage of computing the potential of
frequency interaction¥,;, the nonbonded forces with the equilibrium configuration of

the molecule is that the partial charges on the atoms in the
molecule, which are constant during MD simulation, are de-
termined only for the equilibrium configuration. The quan-
In the SISM defined by Eq(40), the problem of the tum potential is different for all the other deformed configu-
high-frequency anharmonic interactions defined \ly, in rations of the molecule and therefore different partial charges
Eq. (46) cannot be addressed by introducing shorter timecorresponding to these configurations should be used in MD

C. Equilibrium SISM
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simulation. By computing the potential of the electrostaticSISM treated numerically within the generalized leap-frog
forces with the equilibrium positions instead of the actualscheme in the same way as in the LFV method.
ones, this problem is circumvented. The SISM differs from other similar integration methods
The SISM-EQ is equivalent to the SISM defined by Eq.in that it uses the translating and rotating internal coordinate
(40) except that the modified electrostatic and Lennard-Jonesystem of each molecule in the system, which enables us to
potential are used. The SISM-EQ therefore conserves perform the normal mode analysis only once, at the begin-
_ ning of the simulation. Since the SISM is symplectic and
H=T(P) + Vuin(@) + Vad d(@)] (70 syrr?metric it is time reversible. From the time reversibility
The SISM-EQ is similar to equilibrium MOLLY(Ref.  condition we derived the equations of motion for the dynam-
36) except that there are some important differences. The&s of the internal coordinate system of each molecule. This
first difference is in the applied integration scheme for thedynamics represents the core of the method. With the intro-
propagation of the coordinates and momenta of the atomsluction of the translating and rotating internal coordinate
The SISM-EQ uses the integration scheme of the SISM desystem we achieve that the displacements of the atoms from
fined by Eq.(40) for the propagation of the coordinates andthe instantaneous equilibrium positions are always suffi-
momenta of the atoms whereas the equilibrium MOLLY use<iently small and the theory of small vibrations can be ap-
the scheme of the Verlet-I/r-RESPA methd®Another es- plied. The coupled vibrations of atoms in molecules are de-
sential difference is that in the SISM-EQ different positionscoupled using the normal coordinates, which are also used to
d(g), which define the equilibrium positions of the atoms, describe the translation and rotation of molecules.
are used. In the equilibrium MOLLY the equilibrium posi- We have also derived two improvements of the SISM,
tionsd(qg) are obtained by projecting the coordinates of thewhich efficiently handle those high-frequency anharmonic
atomsq onto the manifold in the configuration space definedvibrational terms in the Hamiltonian that are integrated nu-
by the reference values of the bond lengths and bondherically in the SISM. The SISM-MTS uses, for the numeri-
angles® This projection is performed by an iterative numeri- cal integration of high-frequency anharmonic vibration
cal procedure similar to SHAKE.On the contrary, in the terms, a shorter integration time step and for the dynamics,
SISM-EQ Eqgs(1)—(3) and(A1)—(A3) are used to define the which is generated by the electrostatic and van der Waals
equilibrium positions of atoms. This is more convenient be-interactions, a correspondingly longer time step. The equilib-
cause the equilibrium positions of atoms determined in thigium SISM (SISM-EQ uses a new averaging function, first
way are in accordance with the standard theory of moleculaintroduced here, to mollify the impulse of the slow forces

vibrations and no numerical iteration is required. and the integration scheme of the introduced SISM to propa-
gate in phase space. The van der Waals and electrostatic
D. Equilibrium multiple time stepping SISM potential energies are calculated using the equilibrium posi-

L i ) tions of atoms, which are defined by the Eckart frame, in-
Combining integration scheme the SISM-MTS given by gto5 of in the actual positions of the atoms in a molecule. In

Eq' (66) and the SISM'EQ introduce(_j in the preceding secyyg way the components of intermolecular forces are elimi-
tion for the propagation of the coordinates and momenta of,ye in the directions along which the high-frequency mo-
atoms, leads to the SISM-MTS-EQ. We use the equilibriumg 5 viprations are excited, which improves the stability of
positionsd(q) defined by Eqs(1)«3) and(A1)«A3) @ in 1o presented integration methods. Combining methods
the SISM-EQ method. This functioti(q) represents a new SISM-MTS and SISM-EQ leads to the method SISM-

averagi_ng func_tion to compute nonbonded potential e”ergWITS-EQ with which the optimum enlargement of the inte-
It mollifies the impulse of the slow forces and thus togethergratiOn time step was achieva¥®

with the SISM-MTS leads to the SISM-MTS-EQ integration
method. ACKNOWLEDGMENTS
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An increase of efficiency of the newly developed inte-

gration methods in comparison with standard symplectic in'APPENDIX A
tegration LFV method was achieved by the analytical treat-

ment of high-frequency motions using the normal mode  The Eckart internal coordinate syst@‘rﬁ2 is introduced
analysis, which is carried out once at the outset of a simulaas follows: first we define a fixed Cartesian coordinate sys-
tion for an isolated molecule only. The method increases théem and denote the instantaneous position vectoksatbms
longest size of the integration time step from the size that i®f a molecule of the system relative to its origin by, «
determined by the high-frequency bond-stretching and angle=1,2,...,N.

bending interactions to the size that is determined by the van The Eckart frame is then defined by the orthogonal right-
der Waals and electrostatic interactions acting among pahanded triad of unit vectork, i=1, 2, 3, with the origin in
ticles in the system. These nonbonded interactions are in thibe center of mass of a molecule. The unit vectors are
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uniquely defined by the instantaneous positiop®f atoms
in the molecule, by the masses of atomg, and by the
constant equilibrium distances of the atoms from the mo
ecule’s center of masg®, i=1, 2, 3, defined by the static
molecular modéf and satisfying=,m,c*=0. The internal

coordinate system can be attached to the equilibrium cor€auiliorium positionsp,,
figuration of a molecule in different ways, each of which
yields a different Eckart frame. Nevertheless, once we have
made a definite choice, the Eckart frame is defined in a

unique way.
The unit vectord,,f,, andf; are determined from three
Eckart vectorsF; , F,, and F,, which are introduced &%

Fi= 2 ML, (A1)

wherem,, is the mass of ther atom in the molecule. In the
example of nonlinear and nonplanar molecule$=1, 2, 3,
are computed as

(f1,f2,f5) = (Fp, Fo, Fa) - F 12, (A2)

where F is a symmetric positive definite Gram matrix de-
fined as

Fi1-F1 F-Fo Fr-F;

F=|\F2rF1 F2rFy FaF3

(A3)

F Y2 is a positive definite matrix for whiclgF /2. F1/2
:.753;1 holds, whereF ! is the positive definite inverse of
F.

The vectord;, i=1, 2, 3, satisfy the Eckart conditions for
the orientation of the Eckart frarfie®

> M, X p, =0, (A4)

J. Chem. Phys. 122, 174101 (2005)

w,=R+c,+p, a=1,..,N, (B1)

|where the equilibrium positions of atoms relative to the cen-

ter of mass of the molecule are given by the vectysle-
fined by Eq.(2) and the displacements of atoms from their
fulfill the Eckart conditions in Eq.

Ad),

a

(B2)

Arbitrary position vector ,, =1,...,N, with the same cen-
ter of massR defines the same Eckart frame as, a
=1,...,N, only if it can be written a¥

re=R+Cy+ 7, (B3)

where 5, are the displacements of atoms from the equilib-
rium positions in this changed configuration of the molecule
r. a=1,...,N, which also fulfill the Eckart conditions

2 M€y X 7, =0. (B4)
From Egs.(B1) and(B3) it follows that the position vectors
which define the same Eckart frame have the same equilib-
rium configuration, only the displacements are different.

Letw,, a=1,...,N, define the predicted Eckart frame in
the middle of the integration step after the propagation by
exp((At/Z)LHo),

At

+—v
2

Wo =g,

(B5)

[e3 [1/0’
wherera0 andva0 are the atom coordinates and velocities at
the beginning of the integration step, respectively. The posi-
tionsw,, «=1,...,N, can then be written in the forrtB1)
with the displacementp, satisfying the Eckart conditions
(B2).

The initial velocity can be split into the vibrational, ro-

which state that there is no angular momentum with respeaational, and translational part, respectively,

to the internal coordinate system in the zeroth order of dis-

placements of the atoms from their equilibrium positiéhs.
In the example of planar moleculesz=0 holds.
Therefore®

(f11f2) = (T1!f2) ' Fl/Z’ (AS)

fa=f; X1y, (AB)

where X denotes the vector product of two vectors aRds
a symmetric % 2 matrix defined by

Fio-F Fi-F

(A7)
Fy-Fi Fy T

vib rot trans

Vao=Vay *Vay tVay - (B6)

The term v;g;wggns is the only part of the velocity that

moves the position of the equilibrium configuration of the
molecule(the center of mass of the molecule is moving ac-
cording tov2" the orientation of the molecule changes ac-
cording tovy,). Since the velocity;, +vq2"*is constant dur-

ing propagation by exgAt/ 2)I:H0) and the initial
coordinates and momenta of atoms at the beginning of the
integration step are also used in the prediciiBb), the ac-

tual positions of atoms,, a=1,...,N, in the middle of the
integration step after the propagation by e(mIZ)I:HO) de-
termine the same equilibrium configuration of the molecule

The example for linear molecules is described in RefR+c, asw,, «=1,...,N. The positions,, «=1,...,N, can

29.

APPENDIX B

Let the Eckart framé;, i=1, 2, 3, be located at the center
of mass of a molecul® defined by the position vector

therefore be expressed in the fofB3).
Next, n, is split as

o= Nay ot N,y (B7)

where Na,_, Ar€ the displacements of atoms from the equi-
librium positionsR+c, due to rotational and translational
motion, andnamto are the displacements due to vibrational
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