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An iterative SISM (split integration symplectic method) for molecular dynamics (MD) integration is described.
This work explores an alternative for the internal coordinate system prediction in the SISM introduced by
Janezˇič et al. (J. Chem. Phys. 2005, 122, 174101). The SISM, which employes a standard theory of molecular
vibrations, analytically resolves the internal high-frequency molecular vibrations. This is accomplished by
introducing a translating and rotating internal coordinate system of a molecule and calculating normal modes
of an isolated molecule only. The Eckart frame, which is usually used in the standard theory of molecular
vibrations as an internal coordinate system of a molecule, is adopted to be used within the framework of the
second order generalized leapfrog scheme. In the presented MD integrator the internal coordinate frame at
the end of the integration step is predicted halfway through the integration step using a predictor-corrector
type iterative approach thus ensuring the method’s time reversibility. The iterative SISM, which is applicable
to any system of molecules with one equilibrium configuration, was applied here to perform all-atom MD
simulations of liquid CO2 and SO2. The simulation results indicate that for the same level of accuracy, this
algorithm allows significantly longer integration time steps than the standard second-order leapfrog Verlet
(LFV) method.

INTRODUCTION

The standard theory of molecular vibrations was originally
developed to study the rotation-vibration spectra of molec-
ular gases.1 In this theory it is assumed that the Born-
Oppenheimer approximation in separating the electron and
nuclear degrees of freedom is valid and the dynamical
molecular model2 is used to describe the structure and
dynamics of a molecule. A molecule is supposed to consist
of point-masses (atoms) that are held together by forces
stemming from the potential defined by the motions of
electrons. The forces between neighboring atoms in a
molecule can be represented by weightless harmonic springs
that obey Hooke’s law, so that a molecule can be thought of
as a system of coupled harmonic oscillators obeying the
classical equations of motion. The interactions between
separate molecules are neglected.1 A molecule can translate
and rotate around its center-of-mass, while at the same time
the atoms can vibrate around their equilibrium positions
defined by the minima of the potential. While translation of
a molecule is uncoupled from the vibrational and rotational
degrees of freedom and can be treated separately, this is not
the case for coupled rotation and vibration of a molecule.
To handle the rotation-vibration problem, the internal
coordinate system of a molecule that rotates with the
molecule is introduced.1 A set of conditions that define the
internal coordinate systemsthe Eckart frame, which allows
for an optimum separation of rotation and vibration was
introduced in ref 3 for the case of nonlinear molecules with
one equilibrium configuration and no internal rotation. It was
assumed that the displacements of the atoms from their
equilibrium positions defined by the moving Eckart frame
are sufficiently small. The extension to linear molecules was

presented in ref 4. The special importance of the Eckart frame
is that it enables the introduction of the normal coordinates
in the terms of which the coupled vibrations of a molecule
become uncoupled and thus analytically treatable.5

A similar physical picture as in the standard theory of
molecular vibrations is also used in all-atom molecular
dynamics (MD) simulations.6-8 In all-atom MD simulations
atoms are also treated as classical point-mass particles, and
the classical equations of motion are integrated for all atoms
in the system to simulate the behavior of the molecular
system. Here, as opposed to the standard theory of molecular
vibrations, the amplitudes of vibration may not be small but
can vary by large amounts. The interactions, e.g., the
electrostatic and van der Waals interactions, between dif-
ferent molecules are also taken into account, so that more
complex molecular systems, e.g., liquids, can also be treated.
The equations describing the motion of these systems usually
do not have an analytical solution, and therefore the solution
can only be obtained by numerical integration.6,9

New semianalytical second order symplectic integrators,
developed by combining the molecular dynamics (MD)
integration and the standard theory of molecular vibrations,
were presented in refs 10-12. The unique feature of these
MD integrators is in that the standard theory of molecular
vibrations, which is a very efficient tool to analyze
the dynamics of the studied system from computed
trajectories,13-19 is used not to analyze but to compute
trajectories of molecular systems. Information about the
energy distribution of normal modes and the energy transfer
between them is obtained without additional calculations.20

The analytical description of coupled molecular vibrations,
which is employed by the methods presented in refs 10-
12, is possible only by using the normal coordinates1 and a
translating and rotating internal coordinate system of each* Corresponding author e-mail: dusa@cmm.ki.si
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molecule.2,3 The dynamics of an Eckart frame had to be
adopted to be used within the second-order generalized
leapfrog scheme21,22for MD integration. To ensure the time-
reversibility of the methods the internal coordinate system
was predicted at the beginning of an integration step to yield
the exact equilibrium configuration of a molecule halfway
through the integration step.

In the present work we explore an alternative for the
internal coordinate system prediction, which is here made
not at the beginning but halfway through the integration step.
As opposed to the method presented in the previous work
in ref 10, here, an iterative procedure as in the predictor-
corrector type numerical methods is employed to predict the
internal coordinate system for the end of the integration step
giving rise to iterative version of Split Integration Symplectic
Method (SISM). The method presented here was applied to
perform all-atom MD simulations of liquid CO2 and SO2.
The numerical results indicate that the iterative SISM, due
to the analytical treatment of high-frequency motions, allows
considerably longer integration time steps than the standard
LFV algorithm23 for the same computational accuracy and
computational cost per integration step.

2. INTERNAL COORDINATE SYSTEM

First, we define a fixed Cartesian coordinate system and
denote the instantaneous position vectors ofN atoms of a
molecule relative to its origin byrR∈R3, R ) 1, 2,...,N.10

Next, we introduce the translating and rotating internal
coordinate system of the molecule, which is attached to the
molecule and moves with it. Usually the Eckart frame2,3 is
chosen to be the internal coordinate system, which is the
internal coordinate system where the coupling between the
vibrational and rotational degrees of freedom of a molecule
is zero at equilibrium. The Eckart frame is defined by the
right-handed triad of unit vectorsf i, i ) 1, 2, 3, wheref j‚fk

) δjk, with the origin in the center-of-mass of a molecule.
The unit vectors are uniquely defined by the instantaneous
positionsrR of atoms in the molecule, by the masses of atoms
mR, and by the constant equilibrium distances of the atoms
from the molecule’s center-of-massci

R, i ) 1, 2, 3 satisfy-
ing ∑RmRci

R ) 0.2 The internal coordinate system can be
attached to the equilibrium configuration of a molecule in
different ways, each of which yields a different Eckart frame.
Nevertheless, once we have made a definite choice, the
Eckart frame is defined in a unique way.

The equilibrium positions of atoms relative to the mol-
ecule’s center-of-mass are given by vectorscR

The equilibrium positions of atoms in the Cartesian
coordinate system are given by

whereR is the center-of-mass vector

The displacement vectors of atoms from their equilibrium
position are therefore defined as

If the displacement vectors are written in terms of the internal
coordinate system, the relative Cartesian displacement
coordinates are

wheref1 points along thex direction,f2 along they direction,
andf3 along thezdirection of the internal coordinate system.

The unit vectorsf1, f2, and f3 are determined from three
Eckart vectorsF1, F2, andF3, which are introduced as in
ref 2

wheremR is the mass of theR atom in the molecule. In the
example of nonlinear and nonplanar moleculesf ) (f1,f2,f3)
are computed as

whereF ) (F1,F2,F3) andG is a symmetric positive definite
Gram matrix defined as

HereX denotes the tensor product of two vectors. The matrix
G-1/2 is a positive definite matrix for whichG-1/2‚G-1/2 )
G-1 holds, whereG-1 is the positive definite inverse ofG.2

The vectorsf i, i ) 1, 2, 3 satisfy the Eckart conditions for
the orientation of the Eckart frame2,3

which state that there is no angular momentum with respect
to the internal coordinate system in the zeroth order of
displacements of the atoms from their equilibrium positions.1

In the case of planar molecules,c3
R ) 0 holds. Therefore,2

where× denotes the vector product of two vectors, andG
is a symmetric 2× 2 matrix defined by

In the example of linear molecules, only one unit vector,
f3, can be uniquely defined. The other two,f1 and f2, are
arbitrary unit vectors determined in such a way that the
mutual orthogonality between all of them holds.4,24 Unit
vector f3 points along the axis of the molecule and is
determined from the condition (9)

where |‚| denotes the norm of the vector. Without loss of

cR ) ∑
i

ci
Rf i (1)

dR ) R + cR (2)

R ) ∑
R

mRrR/∑
R

mR (3)

GR ) rR - dR (4)

GR ) (GR‚f1)f1 + (GR‚f2)f2 + (GR‚f3)f3 ) ∆xRf1 + ∆yRf2 +
∆zRf3 (5)

Fi ) ∑
R

mRci
RrR (6)

f ) F‚G-1/2 (7)

G )F XF (8)

∑
R

mRcR × GR ) 0 (9)

(f1,f2) ) (F1,F2)‚G
-1/2 (10)

f3 ) f1 × f2 (11)

G ) (F1,F2)X(F1,F2) (12)

f3 ) ∑
R

mRci
RrR/|∑

R
mRci

RrR)| (13)
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generality, the second component off2y can be set to 0. The
first and the third one (f2x andf2z, respectively) are determined
from

wheref1 is orthogonal to bothf2 and f3:

3. DESCRIPTION OF MOLECULAR DEGREES OF
FREEDOM IN TERMS OF NORMAL COORDINATES

Using the internal coordinate system we can define
equilibrium positions of the atoms in a molecule in such a
way that the displacements of the atoms∆qi are sufficiently
small, so that the normal-mode analysis can be applied.

In normal-mode analysis only quadratic terms are kept in
the expansion of the vibrational potential energyVvib and
all higher terms are neglected1

Here∆q ) (∆x1,∆y1,∆z1,...,∆xN,∆yN,∆zN) is a vector of the
relative e Cartesian displacement coordinates and their
corresponding momenta are∆p ) (m1∆V1x, m1∆V1y, m1∆V1z,...,
mN∆VNx, mN∆VNy, mN∆VNz), where subscriptsx, y, z denotex,
y, z components of the internal coordinate system, respec-
tively. The HessianH∈R3N×3N is a symmetric matrix of the
second derivatives of the vibrational potential energy with
the elements

To determine the vibrational motions of the system, the
eigenvalues and eigenvectors of the mass-weighted Hessian
M -1/2‚H‚M -1/2 have to be calculated.1,16-18 This leads to
solving a secular equation

whereM∈R3N×3N is a diagonal mass matrix. The diagonal
elements areM11 ) m1, M22 ) m1, M33 ) m1,..., M3N-2, 3N-2

) mN, M3N-1,3N-1 ) mN, M3N, 3N ) mN. For a nonlinear
molecule composed ofN atoms, eq 19 has 3N - 6 nonzero
eigenvaluesωi ) xλi describing molecular vibrations. The
corresponding dynamics is described in the standard theory
of molecular vibration by normal coordinatesQi, i ) 1, 2,...,
3N - 6.25 Six of 3N roots in eq 19 are zero. They correspond
to three translations and three rotations of a molecule as a
whole, while their dynamics is not described in terms of the
normal coordinates.1,10

An alternative approach to the standard theory’s descrip-
tion of a molecule’s rotation and translation1 is to describe
rotation and translation of a molecule in terms of the normal
coordinates. To do so the whole atom velocity needs to be
expressed in terms of the relative Cartesian displacement
coordinates. This approach was presented in full detail in
ref 10 where it was shown that the dynamics of the internal
coordinate system in this case differs from the dynamics of
the Eckart frame, which is employed in the standard theory
of molecular vibrations.

The equations of motion for the normal coordinates take
the Hamiltonian form10

wherePi is the conjugate momentum to the normal coordi-
nateQi.25

The particular solution of the system (20) can be written
as10

Eq 21 describes vibrational motion corresponding to the
normal modei with ωi > 0.

The equations of motion for the translation and rotation
of a molecule in terms of the normal coordinates, obtained
from eq 21 for the normal coordinates withωi ) 0 and using
limxf0 sin x/x ) 1, are10

The expressions for the transformations between Cartesian,
relative Cartesian displacement, and normal coordinates are
obtained in a straightforward way and are presented in ref
10.

4. ITERATIVE SISM

In the MD simulation the Hamilton equations are solved
for each atom of the system

where L̂H is the Lie operator,{,} is the Poisson bracket,25

andη ) (q,p) is a vector of the coordinates of all the particles
and their conjugate momenta.

The formal solution of the Hamiltonian system (24) can
be written in terms of Lie operators as

and represents the exact time evolution of a trajectory in
phase space composed of coordinates and momenta of all
the particles fromtk to tk + ∆t, where∆t is the integration
time step.25

f1‚f2 ) 0 (14)

|f2| ) 1 (15)

f1 ) f2 × f3 (16)

Vvib ≈ Vharm)
1

2
∑
i,j)1

3N ( ∂
2Vvib

∂∆qi∂∆qj
)

0

∆qi∆qj )

1

2
∑
i,j)1

3N ( ∂
2Vharm

∂∆qi∂∆qj
)

0

∆qi∆qj

)
1

2
∑
i,j)1

3N

Hij∆qi∆qj )
1

2
∆q‚H‚∆q (17)

Hij ) Hji ) ( ∂
2Vvib

∂∆qi∂∆qj
)

0
) ( ∂

2Vharm

∂∆qi∂∆qj
)

0
(18)

det(M-1/2‚H‚M-1/2 - λI ) ) 0 (19)

d
dt

Pi ) -ωi
2Qi;

d
dt

Qi ) Pi, i ) 1, 2,..., 3N (20)

[Pi(∆t
2 )

Qi(∆t
2 ) ] ) [cos(ωi

∆t
2 ) - ωisin(ωi

∆t
2 )

1
ωi

sin(ωi
∆t
2 ) cos(ωi

∆t
2 ) ][Pi(0)

Qi(0)] (21)

Pi(∆t
2 ) ) Pi(0) (22)

Qi(∆t
2 ) ) Pi(0)

∆t
2

+ Qi(0) (23)

dη
dt

) {η, H} ) L̂Hη (24)

η|tk+∆t ) exp(∆tL̂H)η|tk (25)
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First, we split the HamiltonianH of a system into two
parts10

whereH0 is the part of the Hamiltonian that can be solved
analytically andHr is the remaining part.

Next, a second-order approximation for (25), known as
the generalized leapfrog scheme,21,22 is used

which defines the Split Integration Symplectic Method
(SISM).10 The whole integration time step combines the
analytical evolution ofH0 with a correction arising from the
Hr resolved by numerical integration.

The model Hamiltonian has the following form

where i and j run over all atoms,mi is the mass of theith
atom,pi is the linear momentum of theith atom,b0 andθ0

are reference values for bond lengths and angles, respectively,
kb andkθ are corresponding force constants,ei denotes the
charge on theith atom, ε0 is the dielectric constant in a
vacuum,rij is the distance between theith and jth atoms,
andεij andσij are the corresponding constants of the Lennard-
Jones potential.

The total vibrational potential energy of the system is the
sum of vibrational potential energies of all the molecules in
the system10

where Vvibj is the vibrational potential energy of thejth
molecule.

The pure harmonicH0 in the splitting (26) is defined as
the sum of vibrational energies of all the molecules in the
system10

whereT ) ∑ipi
2/2mi is the kinetic energy of all the atoms in

the systems,Tj is the kinetic energy of thejth molecule,Vharm

is the harmonic vibrational potential energy, which is for an
individual molecule defined by eq 17,Vharmj is the corre-
sponding harmonic vibrational potential energy of thejth
molecule, andm is the number of all the molecules in the
system.

The remaining part of the Hamiltonian

is then equal to the sum of the nonbonded potential energy

and the anharmonic vibrational potential energy of higher
terms (cubic, quartic, etc.) in terms of displacements of atoms
from their equilibrium positions is

Each molecule is treated as an isolated molecule when
propagated by exp(∆t/2L̂H0). Propagation by exp(∆t/2 L̂H0)
is solved analytically permitting a longer integration time
step to be used by the SISM.

As demonstrated in ref 10 the equations of motion that
describe the dynamics of the internal coordinate system used
by our approach are different from the corresponding
equations of motion for the Eckart frame. In ref 10 we
derived the equations of motion for the internal coordinate
system from the method’s time-reversibility condition. It was
shown that the internal coordinate system is fixed over the
evolution with exp(∆t/2 L̂H0). Therefore it can be only moved
either at the beginning or in the middle (evolution with
exp(∆tL̂Hr)) of the integration step. In ref 10 we only explored
the possibility that the internal coordinate system is moved
at the beginning of an integration step to yield the exact
equilibrium configuration of a molecule halfway through the
integration step.

Here we present an alternative approach, in which we
change the internal coordinate system halfway through the
integration step to yield the exact equilibrium configuration
of a molecule at the end of the integration step. The algorithm
for the iterative SISM obtained in this way is, for each
molecule in the system, the following:

0. Initialization. At the outset of a simulation the
vibrational frequencies and normal mode vectors of the mass-
weighted HessianM -1/2‚H‚M -1/2, whereH is defined by eq
18 for an isolated molecule only, are computed. Also the
transformational matrixA between the relative Cartesian
displacement and normal coordinates is determined. The
columns ofA are the eigenvectors ofM -1/2‚H‚M -1/2.

Using the initial position of atoms at the outset of a
simulationw0 ) q(t ) 0), the internal coordinate system of
a molecule is determined using eqs 3, 6, 7, and 8. Next, the
Cartesian coordinatesq(0), p(0) are transformed to relative
Cartesian displacement coordinates∆q(0), ∆p(0)10 and the
relative Cartesian displacement coordinates∆q(0), ∆p(0) are
transformed to the normal coordinatesQi(0), Pi(0):

Vnb ) ∑
i>j

eiej

4πε0rij

+∑
i>j

4εij[( σij

rij
)12

- (σij

rij
)6] (32)

Vah ) Vvib - Vharm)
1

2
∑

bonds

kb(b - b0)
2 +

1

2
∑

angles

kθ(θ - θ0)
2 - Vharm (33)

Qi(0) ) ∑
l)1

3N

xMllAli∆ql(0) (34)

Pi(0) ) ∑
l)1

3N 1

xMll

Ali∆pl(0) (35)

H ) H0 + Hr (26)

η|tk+1
) exp(∆t

2
L̂H0)exp(∆tL̂Hr

)exp(∆t
2

L̂H0)η|tk + O(∆t3)
(27)

H ) ∑
i

pi
2

2mi

+
1

2
∑

bonds

kb(b - b0)
2 +

1

2
∑

angles

kθ(θ - θ0)
2 +

∑
i>j

eiej

4πε0rij

+ ∑
i>j

4εij[(σij

rij
)12

- (σij

rij
)6] (28)

Vvib )∑
j)1

m

Vvibj
)

1

2
∑

bonds

kb(b - b0)
2 +

1

2
∑

angles

kθ(θ - θ0)
2 (29)

H0 ) T + Vharm) ∑
j)1

m

(Tj + Vharmj
) (30)

Hr ) H - H0 ) Vnb + Vah (31)
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The obtainedQi(0) and Pi(0) are then used as the initial
values of Qi1 and Pi1 in the first integration step of a
simulation: Qi1 ) Qi(0) andPi1 ) Pi(0) whereQik and Pik

are the normal coordinates at the beginning of thekth
integration step. Step0 is performed only once at the outset
of a simulation.

1. Propagation by exp((∆t/2)L̂H0). Rotation ofQik, Pik, i
) 1,..., 3N in phase space by corresponding vibrational
frequencyωi for ∆t/2 to obtainQik′, Pik′, i ) 1,..., 3N using
eq 21 for vibration (ωi * 0) and eqs 22 and 23 for translation
and rotation (ωi ) 0).

2. Transformation of the normal coordinatesQik′, Pik′, i
) 1,..., 3N to the relative Cartesian displacement coordinates
∆qk′, ∆pk′.10

3. Transformation of the relative Cartesian displacement
coordinates∆qk′, ∆pk′ to the Cartesian coordinatesqk′, pk′.10

4. Evolution by exp(∆tL̂Hr). The numerical integration of
momenta (force calculation):

4a. The harmonic forceFk(∆qk′) is calculated where it is
taken into account thatf1, f2, andf3 are fixed and no system
forces are present. The momenta are changed next

where∂/∂q ) (∂/∂q1,∂/∂q2,...,∂/∂q3N). The vectorF is defined
asF ) (F1, F2,..., FN), where

is the harmonic intramolecular force acting on atomR.
4b. Prediction of Moving and Rotating Internal Coor-

dinate System.The internal coordinate system of a molecule
is in the zeroth iteration redefined using eqs 3, 6, 7, and 8
and the positionswk defined as

For all the following iterations the internal coordinate system
is the one defined in step9.

4c. Back transformation from the Cartesian coordinates
qk′ to the relative Cartesian displacement coordinates∆q′′k 10

using the new internal coordinate system.
4d. The new harmonic forceFk′(∆q′′k ) is calculated and

momenta are changed accordingly:

Vharm is redefined with respect to the new internal coordinate
system.Vvib remains unchanged with the redefinition of the
internal coordinate system. Therefore the previously calcu-
lated forces-∂Vvib/∂q(qk′) are used.

Since Hr ) Hr(q), [(∂Hr/∂p) ) 0], only momenta are
changed in step4:

5. Back transformation from the Cartesian coordinates
pk′′′′, to the relative Cartesian displacement coordinates
∆p′′k. 10

6. Back transformation from the relative Cartesian
displacement coordinates∆q′′k,∆p′′k to the normal coordi-
natesQ′′ik, P′′ik, i ) 1,..., 3N.10

7. Propagation byexp((∆t/2)L̂H0). Again, rotation of the
normal coordinates in phase space for∆t/2 to obtainQik+1,
Pik+1, i ) 1,..., 3N using eq 21 for vibration (ωi * 0) and eqs
22 and 23 for translation and rotation (ωi ) 0).

8. Back transformation from the normal coordinatesQik+1,
Pik+1, i ) 1,..., 3N to the relative Cartesian displacement
coordinates∆qk+1, ∆pk+1 and to the Cartesian coordinates
qk+1, pk+1.10

9. Comparison of predicted (step4b) and new (actual)
internal coordinate systems calculated fromqk+1 using eqs
3, 6, 7, and 8. If the agreement between the predicted and
actual internal coordinate systems is inadequate, then return
to step 4b and use the new internal coordinate system
otherwise go to1.

This algorithm holds for every atom in a molecule and
for every molecule in the system. Only the potentialVnb in
eq 32 is the function that depends on all the coordinates of
all the atoms in the system not only on the coordinates of
atoms in a single molecule.

To move the internal coordinate system halfway through
the integration step, the algorithm needs to be symmetric
relative to the point where the internal coordinate system is
moved. In the propagation exp(∆tL̂Hr) the long-range and
the anharmonic forces are computed, and according to them,
the momenta changed at the constant position of the atoms.
The long-range forces and the bond stretching and angle
bending forces computed from the whole bond stretching
and angle bending potential,Vvib, are independent of the
definition of the internal coordinate system. This is not the
case for the harmonic forces computed from the true
harmonic potentialVharmin terms of the relative displacement
Cartesian coordinates. Therefore the part of the algorithm
where the correction due to anharmonic potentialVah is
computed has to be split into two parts. In each of them the
sameVvib potential is used, whereas in the first part,Vharm is
determined in terms of the old internal coordinate system
(step4a) while in the second one in terms of the new one
(step4d). The drawback of this approach is that the harmonic
forces need to be calculated twice per each integration step.
However, since they are short-ranged, their computational
complexity is linear, and the computational complexity for
computation of long-range forces prevails.

The configuration wk from which the new internal
coordinate system is obtained using eqs 6-8 is derived as
follows. The linear momentump ) (p1, p2,..., p3N) )
(p1,p2,...,pN) of a given molecule withN atoms can be split
into a vibrational, rotational, and translational contribution
as

wherepvib is the vibrational part,prot is the rotational part,
andptrans is the translational part of the linear momentum,
respectively. From the dynamics governed by the normal
modes corresponding to vibrational frequency zero (ω ) 0)
as described by eqs 22 and 23 it follows thatprot + ptrans is

p ) pvib + prot + ptrans (41)

p′′k ) p′k + ∆t
2 (-∂Vvib

∂q
(qk′) - Fk) (36)

p′′′k ) p′′k - ∆t
∂Vnb

∂q(q′k)
(37)

FR ) -
∂Vharm

∂∆xR
f1 -

∂Vharm

∂∆yR
f2 -

∂Vharm

∂∆zR
f3

wk ) q′k + M-1‚p′′′k
∆t
2

(38)

p′′′′k ) p′′′k + ∆t
2 (-∂Vvib

∂q
(q′k) - Fk′) (39)

q′′k ) q′k + ∆t∂Hr/∂p(pk′) ) q′k (40)
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a constant of motion during the propagation by exp((∆t/2)-
L̂H0). Only this part of the linear momentum changes the
equilibrium configuration of a molecule (the rotational part
changes the orientation, the translational part moves the
origin of the internal coordinate system), whereas the
vibrational part of the linear momentum determines only the
displacements of atoms from their equilibrium positions.

Using eqs 38 and 41 we can rewritewk as

The coordinateswk defined by eq 38 would therefore define
the same internal coordinate system of a molecule as the
actual atoms’ coordinates at the end of the integration step
if the torque arising from potentialVharm in the second part
of the propagation by exp(∆tL̂Hr) (step4d) did not change
p′′′k

rot. Although the harmonic forces are internal forces and
their sum is zero, they do not lie along bonds joining
neighboring atoms. Therefore they do not satisfy the condi-
tion of the strong law of action and reaction and their torque
changesp′′′k

rot.25 Despite this, eq 38 is a good prediction of
the conformation of the molecule defining the same Eckart
frame as the actual conformation at the end of the integration
step. However, it is not accurate to ensure the time revers-
ibility of the algorithm.10 This obstacle is overcomed by the
iteration, where eq 38 is used in the middle of the integration
step to predict the Eckart frame at the end of the integration
step. Then the remaining part of the integration step is
performed where at the end the actual Eckart frame is
determined from the actual atom positions at the end of the
integration step and then compared with the predicted one.
If the agreement between these two coordinate systems is
inadequate, we return to the middle of the integration step,
use the Eckart frame from the end of the integration step
from previous iteration, and repeat the remaining part of the
integration step. We iterate until the agreement between the
predicted and actual Eckart frame is satisfactory. The quality
of the internal coordinate system prediction is evaluated by
eq 7. From the atom displacements at the end of the
integration step we check whether the predicted internal
coordinate system corresponds to the Eckart frame (up to
the machine accuracy) at the end of the integration step.
Because we repeat only the part of the integration step where
long-range forces are not computed, the additional compu-
tational complexity is linear. Our simulation results indicate
that the convergence is usually reached after two iterations.
Since the dynamics of the internal coordinate system is time-
reversible the presented MD integrator is also time-reversible,
a necessary condition for all symmetric symplectic integra-
tors.26

The prediction (38) together with eqs 22 and 23 governs
the dynamics of the equilibrium configuration of a molecule,
while the atom vibrations around their equilibrium positions
are determined by eq 21.

Owing to the introduction of the translating and rotating
internal coordinate system of a molecule, the HessianH
defined by eq 18 is diagonalized only once at the beginning
of a simulation, in step0. This holds only for molecules with
one equilibrium configuration and no internal rotation. Since

the displacements of atoms from their moving equilibrium
positions are always sufficiently small, eq 17 holds at any
moment. Therefore the HessianH, defined by eq 18, is the
same constant matrix for the entire simulation. The iterative
SISM is schematically presented in Figure 1.

5. NUMERICAL EXPERIMENTS

The presented iterative SISM was evaluated on a model
system of 1024 linear carbon dioxide molecules (CO2) and
planar sulfur dioxide molecules (SO2).

The model Hamiltonian is in both examples given by eq
28. The derivation of the corresponding Hessians defined
by eq 18 is presented elsewhere.11,12,27

Carbon Dioxide (CO2). The experimental value28 was
taken for the reference bond length between carbon and
oxygen atoms in the CO2 molecule. Partial charges and
Lennard-Jones potential parameters are taken from ref 29.
The bond stretching and angle bending force constants were
obtained by fitting the normal-mode frequencies of the CO2

molecule calculated analytically30 to the corresponding
experimental values28 (see Table 1). Our parameters of the
Hamiltonian (28) given in Table 2 are in good agreement
with the force-field parameters from ref 31.

We have carried out the MD simulation of a system of
1024 CO2 molecules with the densityF ) 1.179 g/cm3 at T
) 216.6 K corresponding to the liquid state.28 The corre-
sponding size of the simulation box wasa ) 39.88 Å.
Periodic boundary conditions were imposed to overcome the
problem of surface effects; the minimum image convention
was used.6 The Coulomb interactions were truncated using

wk ) qk′ + M-1‚p′′′k
∆t
2

)

q′k + M-1‚(p′′′k
vib + p′′′k

rot + p′′′k
trans)

∆t
2

(42)

Figure 1. Solution scheme for iterative SISM.

Table 1. Normal Mode Frequencies of the CO2 Molecule

normal mode
1/λ [cm-1]:
experimenta

1/λ [cm-1]:
theoryb

antisymmetric C-O stretching 2349 2410
symmetric C-O stretching 1333 1258
angle bending 667 667

a Experimental.28 b Theoretical.30
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the force-shifted potential32 with a cutoff distanceroff ) 8.5
Å.33 The Lennard-Jones interactions were shifted by adding
the termCijrij

6 + Dij to the potential, whereCij andDij were
chosen such that the potential and force are zero atrij )
roff.34 The initial positions and velocities of the atoms were
chosen at random. The system was then equilibrated for 50
ps where the velocities were scaled every 1000 integration
time steps, followed by an additional 50 ps of equilibration
at constant energy of the system to ensure that the velocities
assume the Maxwell distribution atT ) 216.6 K. To obtain
physically and numerically relevant initial conditions to
perform the MD simulation of a system of flexible molecules,
the equilibration was also monitored using the Vieillard-
Baron rotational order parameter.35,36

Sulfur Dioxide (SO2). The reference bond lengths and
angles as well as the Lennard-Jones potential constants and
partial atom charges are taken from refs 37 and 38 for the
case of polar SO2 in liquid state. The bond stretching and
angle bending force constants given in Table 4 are obtained
in the same way as in the case of CO2 using the data from
Table 3. All other parameters of Hamiltonian (28) are
reported in Table 4. We have performed the MD simulation
of liquid SO2 with the densityF ) 1.20 g/cm3 at T ) 350
K.28 The simulation box size for the system composed of
1024 molecules isa ) 45.0 Å. The simulation protocol is
the same as for the liquid CO2.

6. RESULTS AND DISCUSSION

To demonstrate the effectiveness of the iterative SISM,
we have monitored in all our numerical experiments the error
in total energy,∆E/E, defined as

whereE0 is the initial energy,Ek is the total energy of the
system at the integration stepk, andM is the total number
of integration steps, and compared the results with the
corresponding results obtained by the standard LFV algo-
rithm.23

The error in total energy for the system of CO2 molecules
is depicted in Figure 2 for the iterative SISM and LFV. The
period for the antisymmetric stretching of the bond between
the carbon and the oxygen atom in the CO2 molecule is 13.8
fs (see Table 1). We estimate therefore that the maximal
acceptable size of the integration time step for the LFV to
be 1.0 fs. From results in Figure 2 we conclude that the error
in total energy for a 3.0 fs integration time step for the
iterative SISM corresponds to the error in the total energy
using a 1.0 fs integration time step in the case of the LFV.
This means the iterative SISM allows to use up to three
times longer time step than the LFV for the same level of
accuracy.

The error in total energy for the iterative SISM and LFV
for the system of SO2 molecules is shown in Figure 3. For
the iterative SISM using a 4.25 fs integration time step this
error roughly corresponds to the error in total energy for the
LFV using a 1.0 fs integration time step. Therefore, the
iterative SISM for this system allows for using up to a four
times longer time step than the LFV for the same level of
accuracy.

The actual speed-up of the new method is determined by
measuring the required CPU time per integration step. The
CPU times for the three methods (the iterative SISM, SISM
from ref 10, and LFV) for 1000 MD steps measured on an
AMD Opteron 1.6 GHz processor for different system sizes
(n molecules) and equal integration time step size (1 fs) are
given in Tables 5 and 6 for the systems of liquid CO2 and
SO2, respectively. The results for both molecular systems
show that the computation cost per integration step is almost

Table 2. Parameters of Hamiltonian (28) for CO2 Molecule

parameter value

bO1C0 ) b10 1.160 Å
bCO20 ) b20 1.160 Å
θ0 0°
kbO1C ) kb1 2150.0 kcal/mol/Å2

kbCO2 ) kb2 2150.0 kcal/mol/Å2

kθ ) kθ1 111.0 kcal/mol/radian2

eO1 ) e1 -0.255e0

eC ) e2 0.51e0

eO2 ) e3 -0.255e0

σOO 3.264 Å
σCC 3.126 Å
εOO 0.1651 kcal/mol
εCC 0.0576 kcal/mol

Table 3. Normal Mode Frequencies of the SO2 Molecule

normal mode
1/λ [cm-1]:
experimenta

1/λ [cm-1]:
theoryb

antisymmetric S-O stretching 1362 1398
symmetric S-O stretching 1151 1205
angle bending 518 599

a Experimental.28 b Theoretical.30

Table 4. Parameters of Hamiltonian (28) for SO2 Molecule37

parameter value

bOS0 ) b0 1.434 Å
θ0 119.5°
kbOS ) kb 1520.0 kcal/mol/Å2

kθ 325.0 kcal/mol/radian2

eO1 ) e1 -0.2353125e0

eS ) e2 0.4706250e0

eO2 ) e3 -0.2353125e0

σOO 3.005 Å
σSS 3.615 Å
εOO 0.11414 kcal/mol
εSS 0.28981 kcal/mol

Figure 2. The error in the total energy of the system of 1024 CO2
molecules withF ) 1.179 g/cm3 at T ) 216.6 K using the iterative
SISM and LFV forM ) 1000.
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the same for the iterative SISM and the SISM from ref 10
while slightly larger than for the LFV. However, for larger
systems consisting of more than 1000 atoms the computation
cost per integration step becomes approximately the same
for all the methods because the time-consumingn2 numerical
calculation of nonbonded forces, which is performed by all
three methods in the same way, prevails over the additional
calculations in the iterative SISM that scale linearly withn.
Therefore, the speed-up of the iterative SISM over the LFV
is determined mainly by the significant difference in the
integration time step size.

7. CONCLUSIONS

In the present work we combined the standard theory of
molecular vibrations with MD integration to derive the
iterative SISM, a variation of the SISM developed in ref 10.
We explored an alternative approach for the internal coor-
dinate system prediction, which is here made halfway through
the integration step. An iterative procedure is then applied
to predict the internal coordinate system of a given molecule
at the end of the integration step.

The presented method was tested on systems of 1024
molecules of liquid CO2 and SO2. The results show that due
to introduction of the moving internal coordinate system,
which enables the analytical treatment of high-frequency
motions, the iterative SISM allows up to four times longer
integration time steps than the standard LFV algorithm for
the same level of accuracy, a 4-fold simulation speed-up.
Further improvements in efficiency were achieved by
implementing the method on computers with highly parallel
arhitecture.39,40

At the present stage of development the new integrator is
applicable only to systems of molecules with one equilibrium
configuration and no internal rotation. Applying the iterative
SISM to molecules with more equilibrium configurations
and/or internal rotations, e.g. proteins, is very difficult
because additional internal coordinate systems should be
introduced to describe each molecular internal rotational
degree of freedom.1,4,41-45 It would be challenging to develop
such an approach and explore its advantages and limitations.
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(10) Janezˇič, D.; Praprotnik, M.; Merzel, F. Molecular dynamics integration
and molecular vibrational theory: I. New symplectic integrators.J.
Chem. Phys.2005, 122, 174101.
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(17) Janezˇič, D.; Brooks, B. R. Harmonic analysis of large systems: II.

Comparison of different protein models.J. Comput. Chem.1995, 16,
1543-1553.
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(38) Borštnik, B.; Janezˇič, D. RISM study of the structure of sulphur dioxide
at a plane wall.Chem. Phys.1989, 130, 195-200.
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