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Molecular Dynamics Integration Meets Standard Theory of Molecular Vibrations
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An iterative SISM (split integration symplectic method) for molecular dynamics (MD) integration is described.
This work explores an alternative for the internal coordinate system prediction in the SISM introduced by
Janék et al. . Chem. Phys2005 122, 174101). The SISM, which employes a standard theory of molecular
vibrations, analytically resolves the internal high-frequency molecular vibrations. This is accomplished by
introducing a translating and rotating internal coordinate system of a molecule and calculating normal modes
of an isolated molecule only. The Eckart frame, which is usually used in the standard theory of molecular
vibrations as an internal coordinate system of a molecule, is adopted to be used within the framework of the
second order generalized leapfrog scheme. In the presented MD integrator the internal coordinate frame at
the end of the integration step is predicted halfway through the integration step using a predictor-corrector
type iterative approach thus ensuring the method’s time reversibility. The iterative SISM, which is applicable
to any system of molecules with one equilibrium configuration, was applied here to perform all-atom MD
simulations of liquid CQand SQ. The simulation results indicate that for the same level of accuracy, this
algorithm allows significantly longer integration time steps than the standard second-order leapfrog Verlet
(LFV) method.

INTRODUCTION presented in ref 4. The special importance of the Eckart frame
is that it enables the introduction of the normal coordinates
in the terms of which the coupled vibrations of a molecule
become uncoupled and thus analytically treatable.

The standard theory of molecular vibrations was originally
developed to study the rotatiewibration spectra of molec-
ular gases.In this theory it is assumed that the Bern o . ) )
Oppenheimer approximation in separating the electron and A Similar physical picture as in the standard theory of
nuclear degrees of freedom is valid and the dynamical moIecu_Iar V|brat|'ons is also used in aII—ato_m mo'lecular
molecular modél is used to describe the structure and dynamics (MD) simulation$.® In all-atom MD simulations

dynamics of a molecule. A molecule is supposed to consist atoms are also treated as classical point-mass particles, and
of point-masses (atoms) that are held together by forcesthe classical equations of motion are integrated for all atoms

stemming from the potential defined by the motions of N the system to simulate the behavior of the molecular
electrons. The forces between neighboring atoms in as_yster_n.Here, as opposed to the standard theory of molecular
molecule can be represented by weightless harmonic springé"brat'or‘s' the amplitudes of vibration may not be small but

that obey Hooke's law, so that a molecule can be thought of €@" vary by large amounts. The interactions, e.g., the
as a system of coupled harmonic oscillators obeying the electrostatic and van der Waals interactions, between dif-

classical equations of motion. The interactions between ferent molecules are also taken into account, so that more

separate molecules are neglectédmolecule can translate ~ COMPlex molecular systems, e.g., liquids, can also be treated.
and rotate around its center-of-mass, while at the same time! "€ €guations describing the motion of these systems usually
the atoms can vibrate around their equilibrium positions do not have an analytical solution, and therefore the solution

defined by the minima of the potential. While translation of €&n only be obtained by numerical integratfgh.

a molecule is uncoupled from the vibrational and rotational New semianalytical second order symplectic integrators,
degrees of freedom and can be treated separately, this is nodleveloped by combining the molecular dynamics (MD)
the case for coupled rotation and vibration of a molecule. integration and the standard theory of molecular vibrations,
To handle the rotationvibration problem, the internal  were presented in refs 312. The unique feature of these
coordinate system of a molecule that rotates with the MD integrators is in that the standard theory of molecular
molecule is introduced A set of conditions that define the vibrations, which is a very efficient tool to analyze
internal coordinate systerthe Eckart frame, which allows the dynamics of the studied system from computed
for an optimum separation of rotation and vibration was trajectories® 9 is used not to analyze but to compute
introduced in ref 3 for the case of nonlinear molecules with trajectories of molecular systems. Information about the
one equilibrium configuration and no internal rotation. It was energy distribution of normal modes and the energy transfer
assumed that the displacements of the atoms from theirbetween them is obtained without additional calculat®ns.
equilibrium positions defined by the moving Eckart frame The analytical description of coupled molecular vibrations,
are sufficiently small. The extension to linear molecules was which is employed by the methods presented in refs 10
12, is possible only by using the normal coordinatasd a
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molecule?® The dynamics of an Eckart frame had to be  The displacement vectors of atoms from their equilibrium
adopted to be used within the second-order generalizedposition are therefore defined as

leapfrog schenté??for MD integration. To ensure the time-

reversibility of the methods the internal coordinate system Pe=Tq— dy (4)
was predicted at the beginning of an integration step to yield
the exact equilibrium configuration of a molecule halfway
through the integration step.

In the present work we explore an alternative for the
internal coordinate system prediction, which is here made p, = (p,f,)f; + (o, f2)f, + (0o fa)f3 = Ax f, + Ay, f, +
not at the beginning but halfway through the integration step. Azf, (5)
As opposed to the method presented in the previous work

in ref 10, here, an iterative procedure as in the predictor- wheref, points along thex direction,f, along they direction,
corrector type numerical methods is employed to predict the andf; along thez direction of the internal coordinate system.
internal coordinate system for the end of the integration step  The unit vectord,, f,, andf; are determined from three

giving rise to iterative version of Split Integration Symplectic Eckart vectors7;, &, and 7, which are introduced as in
Method (SISM). The method presented here was applied toyef 2

perform all-atom MD simulations of liquid CQand SQ.

The numerical results indicate that the iterative SISM, due F, = zmaci“ra (6)
to the analytical treatment of high-frequency motions, allows o

considerably longer integration time steps than the standard

LFV algorithn?? for the same computational accuracy and WNerem is the mass of the. atom in the molecule. In the
computational cost per integration step. example of nonlinear and nonplanar molecules (f1,f,,f3)
are computed as

2. INTERNAL COORDINATE SYSTEM f=grg 12 )

If the displacement vectors are written in terms of the internal
coordinate system, the relative Cartesian displacement
coordinates are

First, we define a fixed Cartesian coordinate system and
denote the instantaneous position vectordNadtoms of a
molecule relative to its origin by,eR3 o = 1, 2,...,N.10

where = (71,7,,73) and&’is a symmetric positive definite
Gram matrix defined as

Next, we introduce the translating and rotating internal G=FQF (8)
coordinate system of the molecule, which is attached to the _
molecule and moves with it. Usually the Eckart fréhes Here® denotes the tensor product of two vectors. The matrix

chosen to be the internal coordinate system, which is thev V2 is a positive definite matrix for V‘(h?cwfllz'yl}z =
internal coordinate system where the coupling between the” * holds, whereg™* is the positive definite inverse of’?
vibrational and rotational degrees of freedom of a molecule  1he vectord;, i =1, 2, 3 satisfy the Eckart conditions for
is zero at equilibrium. The Eckart frame is defined by the the orientation of the Eckart frarhé

right-handed triad of unit vectoffg i = 1, 2, 3, wherdj-f o

= Jj, with the origin in the center-of-mass of a molecule. Zmuca X P, =0 (©)
The unit vectors are uniquely defined by the instantaneous ¢

positionsr, of atoms in the molecule, by the masses of atoms which state that there is no angular momentum with respect
m., and by the constant equilibrium distances of the atoms to the internal coordinate system in the zeroth order of
from the molecule’s center-of-mas§, i = 1, 2, 3 satisfy-  displacements of the atoms from their equilibrium positibns.
ing Yum.¢" = 0.2 The internal coordinate system can be In the case of planar molecules,= 0 holds. Thereforé,
attached to the equilibrium configuration of a molecule in

different ways, each of which yields a different Eckart frame. (f.f) = (%,%)-.GTl’Z (10)
Nevertheless, once we have made a definite choice, the
Eckart frame is defined in a unique way. fa=1, xf, (11)

The equilibrium positions of atoms relative to the mol-

ecule’s center-of-mass are given by vectars where x denotes the vector product of two vectors, ard

is a symmetric 2x 2 matrix defined by
C.= Y cff, (1) G= (T TNTT) (12)
|

In the example of linear molecules, only one unit vector,
The equilibrium positions of atoms in the Cartesian fs can be uniquely defined. The other twig,andf,, are

coordinate system are given by arbitrary unit vectors determined in such a way that the
mutual orthogonality between all of them hofd&. Unit
d,=R+c, (2) vector f3 points along the axis of the molecule and is
determined from the condition (9)

whereR is the center-of-mass vector

= 3 M S ) 139
R=Ymr/Sm, ) ’ "

where || denotes the norm of the vector. Without loss of
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generality, the second componentfgfcan be set to 0. The
first and the third oneff, andf,,, respectively) are determined
from

f,:f,=0 (14)
fol =1 (15)

wheref; is orthogonal to both, andfs:
f,=1,xf; (16)

3. DESCRIPTION OF MOLECULAR DEGREES OF
FREEDOM IN TERMS OF NORMAL COORDINATES

Using the internal coordinate system we can define
equilibrium positions of the atoms in a molecule in such a
way that the displacements of the atog are sufficiently
small, so that the normal-mode analysis can be applied.

In normal-mode analysis only quadratic terms are kept in
the expansion of the vibrational potential eneiy, and
all higher terms are neglected

13N Vyp
vib harm 2i,jZl 8Aqiaqu . G qJ
1 SN 82Vharm
— _ Aq.Aq.
13N 1

i)=1

Here Aq = (Ax,Ay1,AZ,... AXn,AYN,AZy) IS @ vector of the

relative e Cartesian displacement coordinates and their

corresponding momenta at@ = (MAviy, MAvy, MAVy,...,
MuA Ny, MvA DNy, MvA ), Where subscripts y, , denotex,

y, z components of the internal coordinate system, respec-

tively. The HessiatH eR3<3N is a symmetric matrix of the
second derivatives of the vibrational potential energy with
the elements

82Vvib
dAQ0AQ,

82Vharm
dAQ0AQ,

0

i = Hi (18)

0

To determine the vibrational motions of the system, the
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An alternative approach to the standard theory’s descrip-
tion of a molecule’s rotation and translatios to describe
rotation and translation of a molecule in terms of the normal
coordinates. To do so the whole atom velocity needs to be
expressed in terms of the relative Cartesian displacement
coordinates. This approach was presented in full detail in
ref 10 where it was shown that the dynamics of the internal
coordinate system in this case differs from the dynamics of
the Eckart frame, which is employed in the standard theory
of molecular vibrations.

The equations of motion for the normal coordinates take
the Hamiltonian forrn¥

d

d
ar

Qi

=-0’Q; GQ=P, i=12.,N (20)

whereP; is the conjugate momentum to the normal coordi-
nateQ,.?
The particular solution of the system (20) can be written

ag®
8] fetd, e
Q (%t) isin(wi%) cos(wi%‘) Qi0)

Eq 21 describes vibrational motion corresponding to the
normal modd with w; > 0.

The equations of motion for the translation and rotation
of a molecule in terms of the normal coordinates, obtained
from eq 21 for the normal coordinates with= 0 and using
limy—o sinx/x = 1, aré?

Pi(%) =P(0) (22)
Q(3)=PO5 +QO (23)

The expressions for the transformations between Cartesian,
relative Cartesian displacement, and normal coordinates are
obtained in a straightforward way and are presented in ref

4. ITERATIVE SISM
In the MD simulation the Hamilton equations are solved

eigenvalues and eigenvectors of the mass-weighted Hessiafior each atom of the system

M~-Y2H-M~Y2 have to be calculatedt®*® This leads to
solving a secular equation

detM Y2H-M 2 - 21)=0 (19)

whereM eR3*3N js a diagonal mass matrix. The diagonal
elements ardli = g, Mo, = My, M33 = m,..., |\/|3|\172Y N-2

= My, Man-1av-1 = My, May, sv = My, For a nonlinear
molecule composed df atoms, eq 19 has\B— 6 nonzero
eigenvaluesy; = \/Z describing molecular vibrations. The

corresponding dynamics is described in the standard theory

of molecular vibration by normal coordinat€g i = 1, 2,...,
3N — 6.25Six of 3N roots in eq 19 are zero. They correspond

8 — () =L (24)
whereLy, is the Lie operator{,} is the Poisson brackeét,
andn = (q,p) is a vector of the coordinates of all the particles
and their conjugate momenta.

The formal solution of the Hamiltonian system (24) can
be written in terms of Lie operators as

Nyrar = eXp(AﬂA—HD’Ihk (25)

and represents the exact time evolution of a trajectory in

to three translations and three rotations of a molecule as aphase space composed of coordinates and momenta of all

whole, while their dynamics is not described in terms of the
normal coordinates®

the particles front, to ty + At, whereAt is the integration
time step?®
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First, we split the HamiltoniaH of a system into two
partg®
H=H,+ H, (26)
whereHy is the part of the Hamiltonian that can be solved
analytically andH; is the remaining part.

Next, a second-order approximation for (25), known as
the generalized leapfrog scheié?is used

Atr P Aty
., = ex;{ELHO)exp(AtLHr)ex;{ELHO)n|tk + O(A)
(27)

which defines the Split Integration Symplectic Method
(SISM)1° The whole integration time step combines the
analytical evolution oH, with a correction arising from the
H, resolved by numerical integration.

The model Hamiltonian has the following form

2

P 1 1
H=3 4o 5 kb= b+ > k(0 — 69"+
T Zm 2u6nds 2ang es
€8 o\*?  [0)°

wherei andj run over all atomsm is the mass of thé&h
atom, p; is the linear momentum of thi¢h atom,by and 6,
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is then equal to the sum of the nonbonded potential energy

g o\ [o|°
W

and the anharmonic vibrational potential energy of higher
terms (cubic, quartic, etc.) in terms of displacements of atoms
from their equilibrium positions is

Vib + ) 4¢j (32)

1>]

1
Vah = Vvib - Vharm= 5 Z kb(b - b0)2 +

bonds

1 2
- k@(e - 90) ~ Vharm (33)

angles

Each molecule is treated as an isolated molecule when
propagated by expt/2Ly,). Propagation by exgt/2 Ly,)
is solved analytically permitting a longer integration time
step to be used by the SISM.

As demonstrated in ref 10 the equations of motion that
describe the dynamics of the internal coordinate system used
by our approach are different from the corresponding
equations of motion for the Eckart frame. In ref 10 we
derived the equations of motion for the internal coordinate
system from the method’s time-reversibility condition. It was
shown that the internal coordinate system is fixed over the
evolution with expQAt/2 Ly,). Therefore it can be only moved
either at the beginning or in the middle (evolution with

are reference values for bond lengths and angles, respectivelyexp(AtﬁHr)) of the integration step. In ref 10 we only explored

k, andky are corresponding force constargsdenotes the
charge on thdth atom, ¢ is the dielectric constant in a
vacuum,rj is the distance between thth andjth atoms,
ande; andoj are the corresponding constants of the Lennard-
Jones potential.

The total vibrational potential energy of the system is the
sum of vibrational potential energies of all the molecules in
the systertf

m 1 1
Vio =3 Va, =5 3 Kilb b £ 5 k(0= 0° (29)
2

2bonds angles

where Vi, is the vibrational potential energy of theh
molecule.

The pure harmoniti, in the splitting (26) is defined as
the sum of vibrational energies of all the molecules in the
system?

m
|_|0 =T+ Vharm = Z(-I—] + Vharn}) (30)
=

whereT = ¥ ipi%2m is the kinetic energy of all the atoms in
the systemsT; is the kinetic energy of thigh molecule Viam
is the harmonic vibrational potential energy, which is for an
individual molecule defined by eq 1¥am is the corre-
sponding harmonic vibrational potential energy of ftie
molecule, andm is the number of all the molecules in the
system.

The remaining part of the Hamiltonian

H=H-Hy=V,+ V, (31)

the possibility that the internal coordinate system is moved
at the beginning of an integration step to yield the exact
equilibrium configuration of a molecule halfway through the

integration step.

Here we present an alternative approach, in which we
change the internal coordinate system halfway through the
integration step to yield the exact equilibrium configuration
of a molecule at the end of the integration step. The algorithm
for the iterative SISM obtained in this way is, for each
molecule in the system, the following:

0. Initialization. At the outset of a simulation the
vibrational frequencies and normal mode vectors of the mass-
weighted Hessiav ~V2-H-M ~Y2, whereH is defined by eq
18 for an isolated molecule only, are computed. Also the
transformational matriXA between the relative Cartesian
displacement and normal coordinates is determined. The
columns ofA are the eigenvectors &fl ~V/2-H-M 12,

Using the initial position of atoms at the outset of a
simulationw, = q(t = 0), the internal coordinate system of
a molecule is determined using egs 3, 6, 7, and 8. Next, the
Cartesian coordinate0), p(0) are transformed to relative
Cartesian displacement coordinateg(0), Ap(0)!° and the
relative Cartesian displacement coordinateg0), Ap(0) are
transformed to the normal coordinat®@g0), Pi(0):

3N

Q(0)= ;MAiAql(O) (34)
3N 1

P0)= 5 —AA(O) (35)

M



MOLECULAR DYNAMICS INTEGRATION

The obtainedQ(0) and P;(0) are then used as the initial
values of Q;, and P;, in the first integration step of a
simulation: Q;, = Qi(0) andP;, = Pi(0) whereQ;, and P;,
are the normal coordinates at the beginning of Kie
integration step. Stepis performed only once at the outset
of a simulation.

1. Propagation by er(AUZ)I:HO). Rotation ofQ,,, P;, i
1,..., N in phase space by corresponding vibrational
frequencyw; for At/2 to obtainQ,’, P/, i = 1,..., N using
eq 21 for vibration ¢; = 0) and eqs 22 and 23 for translation
and rotation ¢; = 0).

2. Transformation of the normal coordinate®,’, P;/, i
=1,..., Nto the relative Cartesian displacement coordinates
Adi', Api.*°

3. Transformation of the relative Cartesian displacement
coordinate\qy, Apy' to the Cartesian coordinatgg, px'.*°

4. Evolution by exp@tIA_Hr). The numerical integration of
momenta (force calculation):

4a. The harmonic forcéy(Agy) is calculated where it is
taken into account thdt, f,, andfs are fixed and no system
forces are present. The momenta are changed next

At ib
pk=p+2( VI(k)— ) (36)
Ban
Pk =Pk — At (37)
<R Toa(ay
whered/dq = (8/90,8/0,...,3/d0an). The vectorF is defined
asF = (Fy, Fa,..., Fy), where
F = avhar”k _ 8Vham}. _ 8Vharm‘
o 8Axa'l 8Aya'2 8AZ[1I3

is the harmonic intramolecular force acting on atam

4b. Prediction of Moving and Rotating Internal Coor-
dinate System.The internal coordinate system of a molecule
is in the zeroth iteration redefined using eqgs 3, 6, 7, and 8
and the positionsv defined as

W= g+ Mg S (38)
For all the following iterations the internal coordinate system
is the one defined in step

4c. Back transformation from the Cartesian coordinates
g« to the relative Cartesian displacement coordinAte|s*®
using the new internal coordinate system.

4d. The new harmonic forc&'(Aqy) is calculated and
momenta are changed accordingly:

S 1s aCR)

Vharmis redefined with respect to the new internal coordinate
system .V, remains unchanged with the redefinition of the
internal coordinate system. Therefore the previously calcu-
lated forces—aViin/9q(gx’) are used.

Since H, = H,(q), [(dH/9p) = 0], only momenta are
changed in steg:

dk = di + AtoH,/ap(py) =

e — I

P =P t+ (39)

(40)
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5. Back transformation from the Cartesian coordinates
p'"’, to the relative Cartesian displacement coordinates
ADL’- 10

6. Back transformation from the relative Cartesian
displacement coordinateAq,,Ap, to the normal coordi-
natesQ, Pi',i = 1,..., .1

7. Propagat|on byexp(@t/Z)LHo) Again, rotation of the
normal coordinates in phase space Adf2 to obtainQ,. ,,

Pi., i = 1,..., Nusing eq 21 for vibrationd; = 0) and eqs
22 and 23 for translation and rotatiow;(= 0).

8. Back transformation from the normal coordinateg,, ,,

Pi.,, 1 = 1,..., N to the relative Cartesian displacement
coordinatesAqx+1, Apk+1 and to the Cartesian coordinates
k1, Prr1.t°

9. Comparison of predicted (steptb) and new (actual)
internal coordinate systems calculated frgm; using eqs
3, 6, 7, and 8. If the agreement between the predicted and
actual internal coordinate systems is inadequate, then return
to step4b and use the new internal coordinate system
otherwise go tal.

This algorithm holds for every atom in a molecule and
for every molecule in the system. Only the potentfg} in
eq 32 is the function that depends on all the coordinates of
all the atoms in the system not only on the coordinates of
atoms in a single molecule.

To move the internal coordinate system halfway through
the integration step, the algorithm needs to be symmetric
relative to the point where the internal coordinate system is
moved. In the propagation expﬂ_H) the long-range and
the anharmonic forces are computed, and according to them,
the momenta changed at the constant position of the atoms.
The long-range forces and the bond stretching and angle
bending forces computed from the whole bond stretching
and angle bending potentidVyi,, are independent of the
definition of the internal coordinate system. This is not the
case for the harmonic forces computed from the true
harmonic potentia/hamin terms of the relative displacement
Cartesian coordinates. Therefore the part of the algorithm
where the correction due to anharmonic potentig| is
computed has to be split into two parts. In each of them the
sameV,i, potential is used, whereas in the first paftamis
determined in terms of the old internal coordinate system
(step4a) while in the second one in terms of the new one
(step4d). The drawback of this approach is that the harmonic
forces need to be calculated twice per each integration step.
However, since they are short-ranged, their computational
complexity is linear, and the computational complexity for
computation of long-range forces prevails.

The configurationwy from which the new internal
coordinate system is obtained using egs36is derived as
follows. The linear momentunp = (P1, P2,.-- Pan) =
(p1,p2,-..pn) Of @ given molecule withN atoms can be split
into a vibrational, rotational, and translational contribution
as

vib rot

pr+ptp

trans

p= (41)
wherep'? is the vibrational partp™ is the rotational part,
andp'@sis the translational part of the linear momentum,
respectively. From the dynamics governed by the normal
modes corresponding to vibrational frequency zesc=0)

as described by egs 22 and 23 it follows th&t + p'a"sis
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a constant of motion during the propagation by eAp(Z)-
Ln,). Only this part of the linear momentum changes the A2 Evolve with HO
equilibrium configuration of a molecule (the rotational part

changes the orientation, the translational part moves the
origin of the internal coordinate system), whereas the  / --------
vibrational part of the linear momentum determines only the
displacements of atoms from their equilibrium positions.

Rel. Displ. Coordinates

{

Evolve with Hr = Hr (q)
+

Redefinition of the
Internal Coordinate System

Using eqs 38 and 41 we can rewritg as g nal Coordinate
3 artesian Coordinates
1 At 18 .
w,=¢q/+M 1~p{<"7= :
318 -
qu+ M*l.(pranIb_i_ p,k,,rot+ ply(”tran %t (42) 2 Evolve with HO
Normal Coordinates
_____________________ S R
The coordinatesvy defined by eq 38 would therefore define
the same internal coordinate system of a molecule as the L
actual atoms’ coordinates at the end of the integration step premparisenof

Internal Coordinate Systems
Cartesian Coordinates

if the torque arising from potentiatham in the second part
of the propagation by expfLy,) (step4d) did not change
py'". Although the harmonic forces are internal forces and Figure 1. Solution scheme for iterative SISM.
their sum is zero, they do not lie along bonds joining

neighboring atoms. Therefore they do not satisfy the condi-

tion of the strong law of action and reaction and their torque

Table 1. Normal Mode Frequencies of the G®lolecule

changes;'™.% Despite this, eq 38 is a good prediction of | mod 12 [C_m‘llriﬂ 1/fh[0mr;]i
the conformation of the molecule defining the same Eckart __ "orm&mode experime eo

frame as the actual conformation at the end of the integration g;%s%gwfglcoigeiﬁtﬁgmg %ggg igég
step. However, it is not accurate to ensure the time revers- Jfch Cn P o

ibility of the algorithm?° This obstacle is overcomed by the
iteration, where eq 38 is used in the middle of the integration 2 Experimentaf®® Theoreticaf®
step to predict the Eckart frame at the end of the integration
step. Then the remaining part of the integration step is
gerformed d\:cvherehat the ?nd the aqual Eckhart frgm;a r:s positions are always sufficiently small, eq 17 holds at any
et . o s 1 e v Toment. Thraor e Hesia geined by 13, s e
If the agreement between these two coordinate systems i'same constant matrix for the entire S|mulat|on. The iterative
. . . ) SSISM is schematically presented in Figure 1.
inadequate, we return to the middle of the integration step,
use the Eckart frame from the end of the integration step
from previous iteration, and repeat the remaining part of the 5. NUMERICAL EXPERIMENTS
integration step. We iterate until the agreement between the
redicted and actual Eckart frame is satisfactory. The qualit i L
gf the internal coordinate system prediction is )(/avalua?ed bi// system of 1024 linear carbon dioxide molecules ¢&nd
eq 7. From the atom displacements at the end of the Planar sulfur dioxide molecules (SP _
integration step we check whether the predicted internal _The model Hamiltonian is in both examples given by eq
the machine accuracy) at the end of the integration step.by €d 18 is presented elsewhété?*’
Because we repeat only the part of the integration step where Carbon Dioxide (CO;). The experimental valdé was
long-range forces are not computed, the additional compu-taken for the reference bond length between carbon and
tational complexity is linear. Our simulation results indicate 0xygen atoms in the COmolecule. Partial charges and
that the convergence is usually reached after two iterations.Lennard-Jones potential parameters are taken from ref 29.
Since the dynamics of the internal coordinate system is time- The bond stretching and angle bending force constants were
reversible the presented MD integrator is also time-reversible, obtained by fitting the normal-mode frequencies of the,CO
a necessary condition for all symmetric symplectic integra- molecule calculated analyticafy to the corresponding
tors26 experimental valué$ (see Table 1). Our parameters of the
The prediction (38) together with egs 22 and 23 governs Hamiltonian (28) given in Table 2 are in good agreement
the dynamics of the equilibrium configuration of a molecule, Wwith the force-field parameters from ref 31.
while the atom vibrations around their equilibrium positions ~ We have carried out the MD simulation of a system of
are determined by eq 21. 1024 CQ molecules with the density = 1.179 g/crd at T
Owing to the introduction of the translating and rotating = 216.6 K corresponding to the liquid st&feThe corre-
internal coordinate system of a molecule, the Hes$lan  sponding size of the simulation box was= 39.88 A.
defined by eq 18 is diagonalized only once at the beginning Periodic boundary conditions were imposed to overcome the
of a simulation, in ste@. This holds only for molecules with ~ problem of surface effects; the minimum image convention
one equilibrium configuration and no internal rotation. Since was used.The Coulomb interactions were truncated using

the displacements of atoms from their moving equilibrium

The presented iterative SISM was evaluated on a model
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Table 2. Parameters of Hamiltonian (28) for GMolecule

parameter value
bo,c, = b, 1.160 A

bCO20 = b20 1.160 A

6o 0°

Koowrc = Ko, 2150.0 kcal/mol/&
Koco, = Ko, 2150.0 kcal/mol/&
ko = kg, 111.0 kcal/mol/radiah
€, = €1 —0.255%y

=& 0.51g

€0, = €3 —0.255%y

0oo 3.264 A

occ 3.126 A

0.1651 kcal/mol
0.0576 kcal/mol

€00
€cc

Table 3. Normal Mode Frequencies of the $B@lolecule

1A [em™1: 1A [em™1:

normal mode experimerit theory
antisymmetric SO stretching 1362 1398
symmetric S-O stretching 1151 1205
angle bending 518 599

a ExperimentaP® ® Theoretical®

Table 4. Parameters of Hamiltonian (28) for 3®lolecule”

parameter value

bog, = bo 1.434 A

6o 119.5

Kpos = Ko 1520.0 kcal/mol/A

kg 325.0 kcal/mol/radigh
€, =€ —0.235312%,

=& 0.470625@,

€02 = €3 —0.235312%,

oo 3.005 A

Jss 3.615 A

0.11414 kcal/mol
0.28981 kcal/mol

€00
€ss

the force-shifted potenti#with a cutoff distanceqs = 8.5

J. Chem. Inf. Model., Vol. 45, No. 6, 2008577

1

0.1

0.01 |

AE/E

0.001

0.0001 |+’

SisM,
i —

0 1 2 3 4 5 6 7 8

1e-05

At[fs]

Figure 2. The error in the total energy of the system of 1024,CO
molecules withp = 1.179 g/cri at T = 216.6 K using the iterative
SISM and LFV forM = 1000.

6. RESULTS AND DISCUSSION

To demonstrate the effectiveness of the iterative SISM,
we have monitored in all our numerical experiments the error
in total energy AE/E, defined as

1ME -
— )|
v

wherekE, is the initial energyEy is the total energy of the
system at the integration stépandM is the total number
of integration steps, and compared the results with the
corresponding results obtained by the standard LFV algo-
rithm .23

The error in total energy for the system of €@olecules
is depicted in Figure 2 for the iterative SISM and LFV. The
period for the antisymmetric stretching of the bond between
the carbon and the oxygen atom in the Gblecule is 13.8
fs (see Table 1). We estimate therefore that the maximal

AE _ Ekl 43)
E

=)

A.3 The Lennard-Jones interactions were shifted by adding acceptable size of the integration time step for the LFV to

the termC;r;;® + Dj; to the potential, wher€; andD;; were
chosen such that the potential and force are zeng at

be 1.0 fs. From results in Figure 2 we conclude that the error
in total energy for a 3.0 fs integration time step for the

ro.>* The initial positions and velocities of the atoms were iterative SISM corresponds to the error in the total energy
chosen at random. The system was then equilibrated for 50using a 1.0 fs integration time step in the case of the LFV.
ps where the velocities were scaled every 1000 integration This means the iterative SISM allows to use up to three
time steps, followed by an additional 50 ps of equilibration times longer time step than the LFV for the same level of
at constant energy of the system to ensure that the velocitiesaccuracy.
assume the Maxwell distribution &t= 216.6 K. To obtain The error in total energy for the iterative SISM and LFV
physically and numerically relevant initial conditions to for the system of S@molecules is shown in Figure 3. For
perform the MD simulation of a system of flexible molecules, the iterative SISM using a 4.25 fs integration time step this
the equilibration was also monitored using the Vieillard- error roughly corresponds to the error in total energy for the
Baron rotational order paramet&r® LFV using a 1.0 fs integration time step. Therefore, the
Sulfur Dioxide (SO,). The reference bond lengths and iterative SISM for this system allows for using up to a four
angles as well as the Lennard-Jones potential constants antimes longer time step than the LFV for the same level of
partial atom charges are taken from refs 37 and 38 for the accuracy.
case of polar S@in liquid state. The bond stretching and The actual speed-up of the new method is determined by
angle bending force constants given in Table 4 are obtainedmeasuring the required CPU time per integration step. The
in the same way as in the case of £@ing the data from  CPU times for the three methods (the iterative SISM, SISM
Table 3. All other parameters of Hamiltonian (28) are from ref 10, and LFV) for 1000 MD steps measured on an
reported in Table 4. We have performed the MD simulation AMD Opteron 1.6 GHz processor for different system sizes
of liquid SO, with the densityp = 1.20 g/cni at T = 350 (nmolecules) and equal integration time step size (1 fs) are
K.?8 The simulation box size for the system composed of given in Tables 5 and 6 for the systems of liquid £&hd
1024 molecules ist = 45.0 A. The simulation protocol is SO, respectively. The results for both molecular systems
the same as for the liquid GO show that the computation cost per integration step is almost
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Figure 3. The error in the total energy of the system of 1024,SO

molecules witho = 1.20 g/cni at T = 350 K using the iterative
SISM and LFV forM = 1000.

Table 5. CPU Time [s] for Iterative SISM (SISM), SISM° and
LFV for 1000 MD Steps Measured on an AMD Opteron 1.6 GHz
Processor for Different System Sizes @O, Molecules) and Equal
Integration Time Step Size (1 fs)

t(SISMe) H(SISM) t(LFV) t(SISMw)/ t(SISMw)/ t(SISM)/

n [s] [s] [s] t(SISM)  t(LFV) t(LFV)
32 2.8 2.6 2.0 1.08 1.40 1.30
64 9.5 9.1 7.8 1.04 1.22 1.17
128 34.2 333 31.0 1.03 1.10 1.07
256  130.6 128.4 1238 1.02 1.05 1.04
512  510.9 504.1 495.1 1.01 1.03 1.02
1024 2009.7 1980.0 1963.4 1.01 1.02 1.01

Table 6. CPU Time [s] for Iterative SISM (SISM), SISM!° and
LFV for 1000 MD Steps Measured on an AMD Opteron 1.6 GHz
Processor for Different System Sizas %0, Molecules) and Equal
Integration Time Step Size (1 fs)

t(SISMi) t(SISM) t(LFV) t(SISMie) t(SISMw)/ t(SISM)/

n Is] [s] [s]  «SISM) t(LFV)  t(LFV)
32 2.5 23 1.7  1.09 1.47 1.35
64 8.1 76 64 1.07 1.27 1.19

128 287  27.8 254  1.03 1.13 1.09
256 107.6 1059 101.0 1.02 1.07 1.05
512 4175 4139 4036 1.01 1.03 1.03

1024 1630.3 16285 1614.6  1.00 1.01 1.01

the same for the iterative SISM and the SISM from ref 10
while slightly larger than for the LFV. However, for larger

systems consisting of more than 1000 atoms the computation

PRAPROTNIK AND JANEZIC

The presented method was tested on systems of 1024
molecules of liquid C@and SQ. The results show that due
to introduction of the moving internal coordinate system,
which enables the analytical treatment of high-frequency
motions, the iterative SISM allows up to four times longer
integration time steps than the standard LFV algorithm for
the same level of accuracy, a 4-fold simulation speed-up.
Further improvements in efficiency were achieved by
implementing the method on computers with highly parallel
arhitecture?®4°

At the present stage of development the new integrator is
applicable only to systems of molecules with one equilibrium
configuration and no internal rotation. Applying the iterative
SISM to molecules with more equilibrium configurations
and/or internal rotations, e.g. proteins, is very difficult
because additional internal coordinate systems should be
introduced to describe each molecular internal rotational
degree of freedorh?4+4° It would be challenging to develop
such an approach and explore its advantages and limitations.
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