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ABSTRACT: Molecular dynamics (MD) simulations of biophys-
ical systems require accurate modeling of their native environment,
i.e., aqueous ionic solution, as it critically impacts the structure and
function of biomolecules. On the other hand, the models should be
computationally efficient to enable simulations of large spatio-
temporal scales. Here, we present the deep implicit solvation model
for sodium chloride solutions that satisfies both requirements.
Owing to the use of the neural network potential, the model can
capture the many-body potential of mean force, while the implicit
water treatment renders the model inexpensive. We demonstrate
our approach first for pure ionic solutions with concentrations
ranging from physiological to 2 M. We then extend the model to capture the effective ion interactions in the vicinity and far away
from a DNA molecule. In both cases, the structural properties are in good agreement with all-atom MD, showcasing a general
methodology for the efficient and accurate modeling of ionic media.

1. INTRODUCTION
Molecular dynamics (MD) is a powerful computational
technique to understand and predict the behavior of biological
systems, such as nucleic acids, proteins, lipid membranes, and
many others.1−15 The all-atom MD explicitly models all atoms
in the simulated system. However, since the computational
cost scales with the number of atoms, the method is often
inapplicable to biologically relevant time scales and system
sizes. Approaches like enhanced sampling techniques16−19 can
overcome this limitation to some extent.
Alternatively, to reduce the computational complexity,

coarse-grained (CG) modeling20−25 can be employed. It
involves reducing the simulated degrees of freedom either by
merging groups of correlated atoms into effective interaction
sites or by treating part of the system, typically solvent,
implicitly. The latter case can drastically reduce the number of
explicit particle−particle interactions and the resulting
computational costs since the solvent can comprise more
than 90% of the simulated system. The solvent, treated as a
dielectric continuum, can be considered with methods such as
the Poisson−Boltzmann (PB),26,27 COSMO/polarized con-
tinuum model,28 the Generalized Born model,29−31 or
calculating the effective potential between solutes.32 However,
the accuracy of these methods is often inadequate, e.g., some
cannot maintain stable nucleic acid structures, or they
introduce structural bias in proteins.33,34

Nevertheless, with multiscale simulations, one can employ
CG models in the bulk region, while more accurate all-atom
models can be used in the vicinity of biomolecules. Using the
adaptive resolution simulation scheme,35−38 the solvent, i.e.,

water molecules and ions, can change the resolution on-the-fly
from all-atom to CG39 or implicit hydration40 and vice versa.
This approach was, for example, employed to efficiently
simulate a DNA molecule38,40 and to study the mechanism
governing the phase transitions of the high-density DNA
arrays.41,42

Machine learning (ML) paves the way for a new possibility
in the past decade.43 The pioneering work of Behler showcased
that deep neural networks (NN) could be employed to learn a
computationally cheaper surrogate model for the density
functional theory potential energy surface of bulk silicon.44

Following the initial studies,45 other ML algorithms and NN
architectures rapidly emerged.46−55 ML algorithms can be
utilized to construct not only all-atom models but also CG
models.56,57 Previous studies demonstrated a successful
reproduction of structural58−64 and dynamical65−67 properties.
However, most considered pure water solvent or implicitly
treated the ions, even though they play a vital role in biological
processes. For example, the ionic atmosphere has a crucial
effect on the secondary and tertiary structure’s stability, the
binding of charged drugs and proteins, and nucleic acid
folding.68−70 On the other hand, previous ML potentials that
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captured the explicit interaction of ions also explicitly treated
the solvent, i.e., they were fully all-atom models.71−75

Several approaches were developed to fit the potential of
mean force, which corresponds to a high-dimensional energy
function. These methods are the iterative Boltzmann inversion
(IBI),76,77 the force matching,78−80 and the relative entropy.81

These methods have been widely used to determine the
nonbonded interaction for aqueous salt solutions82,83 and soft
matter.77 The resulting potentials are pairwise. However, for
the force-matched potential, it has been shown that including
3-body nonbonded interaction has an impact on structural and
thermodynamic properties.84 For the calculation of a CG
protein force field, the importance of higher-order terms was
demonstrated to reach accuracy close to the all-atom
model.85,86 As stated before, ML potentials are designed to
learn the many-body atomic interaction.87,88 They are, by
design, more adequate to approximate the many-body terms of
the potential of the mean force.
Another crucial point regarding the simulation of ions and

highly charged molecules is the electrostatic interactions.89 For
example, without ions in solution, the effective DNA−DNA
interactions are purely repulsive.90 This implies an accurate
description of long-range interactions. Most of the ML
potentials learn the local geometry of atoms around a central
one until a defined cutoff distance. The potentials are thus
“short-ranged” and neglect long-range physical effects. For
isotropic systems such as water solutions, for example, the ML
potential without an explicit electrostatic term already gives
excellent results.91 On the contrary, for battery materials, it was
shown that a long-range electrostatic treatment is needed when
the system is anisotropic.92 Anisotropic environments for
solutes are also observed in biological systems and in other
interfacial systems. To address this major drawback, different
ML architectures explicitly describe the electrostatic energy
such as charge equilibration,93 the long-distance equivariant
framework LODE,43,94 and the fourth-generation poten-
tial.53,95 Another way is to use a delta-learning approach
where the physics-based potential captures the long-range
interactions.96−98

This work presents a deep implicit solvation (DIS) model
for sodium chloride solutions, where water is coarse-grained
out, whereas ions are modeled explicitly. The ML potential is
based on an equivariant neural network (ENN) architecture
due to its impressive data efficiency and the ability to
generalize more accurately to out-of-distribution configura-
tions.51,52,54,55,99,100 As stated by the Allegro’s developers “the
strict locality of the Allegro model naturally facilitates
separation of the energy into a short-range term and a
physically motivated long-range term.” Thus, rather than
directly fitting the potential of mean force, we define a prior
potential composed of the Lennard-Jones and electrostatic
interactions. The ML potential is trained to account for the
difference between the all-atom data and the prior potential, an
approach also known as delta learning.101 Our model can,
therefore, account for the long-range electrostatic interactions,
which are crucial for the accurate treatment of ions and highly
charged molecules such as DNA. While some previous ML
potentials included long-range electrostatics,53,102,103 these
models were computationally much more expensive. First,
we validate the sodium chloride aqueous solution model at
different salt concentrations ranging from 0.15 to 2.0 mol L−1.
After showing excellent performance for structural properties,
we introduce a periodic DNA molecule into the system and

demonstrate that our DIS model can accurately describe the
effective ion interactions proximal and distal to the DNA
biomolecule.

2. METHODS
2.1. Database Generation. We performed classical all-

atom simulations to obtain a database for the DIS model
training and validation. These simulations were also used to
compute the reference all-atom properties. We employ the
TIP3P water model104 and AMBER 03 force field105 for the
DNA molecule. The sequence of the periodic DNA molecule is
CTCTCGAGAG. The Joung and Cheatham parameters106 are
used for the ions with additional corrections to ion−phosphate
interactions.107 The nonbonded interactions are calculated
within cutoff distances of 0.9 and 1.2 nm, respectively, for the
LJ and the electrostatic potential. The electrostatic interactions
beyond the cutoff are corrected with the PPPM solver.108 Since
the aim of this study was focused on obtaining an accurate
many-body potential of mean force for the ions, the atoms of
the DNA molecule were frozen. A flexible DNA pitch could
also be considered. All simulations are equilibrated in the NPT
ensemble for 2 ns, followed by equilibrations in the NVT
ensemble of 10 and 15 ns for 1.0 and 0.5 mol L−1, respectively.
During the production runs, carried out in the NVT ensemble,
the forces applied on ions are saved every 1 ps. For pure salt
solution systems, the number of configurations in the data set
varies from 8 × 104 for 2.0 mol L−1 salt concentration to 3 ×
105 for 0.15 mol L−1 salt concentration. For systems with the
DNA molecule, the data set contains 1.8 × 105 configurations.
For all cases, we randomly split the data set into training (80%)
and validation (20%) data sets.
2.2. DIS Model. In the DIS model, the ions and the DNA

molecule are treated explicitly, while the water is coarse-
grained out (Figure 1). The DNA model is coarse-grained
because the full all-atom description would not be computa-
tionally efficient for the ML potential of ions. To find the
optimal level of coarse-graining, we explored different DNA
representations in the literature.109,110 The selected CG
mapping is based on the DNA model developed by Kovaleva
et al.,110 where each nucleotide is represented by six CG sites.
The CG model is sufficiently complex to enable the ML
potential to correctly fit the effective interactions in the vicinity
of the DNA.
The many-body potential of the mean force for the ions is

composed of two parts: an ML potential and a prior potential.
The ML potential is an ENN Allegro.51 It uses a strictly local
many-body equivariant representation, resulting in excellent
computational efficiency. For further information, the Allegro’s
potential is described in Supporting Information and more in
detail in developer’s papers.51,111 The parameters of ML model
are trained with the force-matching approach,112 i.e., the
training loss is defined as

L
N N

F F F1
3

( )
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j
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ijk ijk ijk

data ions 1 1 1
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ML all atom prior

data ions

= || ||
= = =

(1)

where Fijk is the force in the k-direction of the j-th ion in the i-
th configuration. We use the Adam optimizer113 with the
default parameters from pytorch.114 The details of the fit are
reported in Supporting Information.
The prior potential prevents the exploration of physically

invalid regions of the potential energy surface, such as particle
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overlaps.64,115,116 We find it to be especially important for
small salt concentrations, i.e., low-density systems. Moreover,

the ions, especially Na+ cations, exhibit numerous stable
configurations within both the minor and major grooves.15

These configurations are already effectively captured by the
prior model. The prior potential models the van der Waals and
electrostatic interactions. For the former, we use the 12−6
Lennard-Jones potential with empirically optimized parameters
(Supporting Information Table S1) to best fit the reference ion
structural properties. For the latter, we employ the Coulomb
interaction with the Wolf summation117,118 for the long-range
correction. The nonbonded interactions are also calculated
within cutoff distances of 0.9 and 1.2 nm, respectively, for the
LJ and the electrostatic potential. Since water is treated
implicitly as a dielectric continuum, the electrostatic
interactions are screened. We use a dielectric constant of 95
as this value corresponds to the measured dielectric constant of
the TIP3P water model.119 Additionally, to further improve the
fit of the sodium-phosphate interaction, we added oxygen
atoms bound to the phosphate atoms (Figure 1 purple). The
added oxygen atoms improve the fit of the Na-phosphate first
coordination shell. These atoms are explicitly modeled only
with the Lennard-Jones potential; i.e., they have a zero charge
and are not seen by the ML potential.

3. COMPUTATIONAL DETAILS
All simulations have been carried out using LAMMPS.120

Newton’s equations of motion are integrated using the
Velocity Verlet integrator121,122 with a 1 fs time step.
Simulations are performed at a temperature of 300 K. For
all-atom simulations, we employ the Nose−́Hoover thermo-
stat123 with a coupling constant of 0.1 ps. In the case of the
NPT simulations maintained at 1.0 bar, we additionally use the
Nose−́Hoover barostat with a coupling constant of 1.0 ps. For

Figure 1. Cross section of the simulation box for simulations of a
periodic DNA molecule at 1.0 mol L−1 sodium chloride salt solution.
The sodium ions are shown in green, while the chloride ions are in
ochre. (a) All-atom model with explicit solvation. The carbon,
nitrogen, phosphate, oxygen, and hydrogen atoms are depicted in
cyan, blue, yellow, red, and white, respectively. (b) DIS model with
implicit solvation. Two types of oxygen atoms are colored red and
purple. Both are explicitly defined in the prior model, but only the
positions of the red oxygen atoms are used as input to the ML
potential.

Figure 2. RDFs for Na+−Na+, Na+−Cl−, and Cl−−Cl− pairs and concentrations 0.15, 0.5, 1.0, and 2.0 mol L−1. The all-atom, prior, and DIS models
are colored black, blue, and red, respectively. The uncertainty in RDFs is too small to be seen.
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simulations employing the DIS model, we use the Langevin
thermostat with a coupling constant of 0.1 ps. All simulations
are performed under periodic boundary conditions. The cubic
box edge is around 4.2 nm for the most concentrated solutions
and 5.4 nm for the lowest one. For simulations including the
DNA molecule, the box size is 8.5 × 8.5 × 3.4 nm, which
corresponds to exactly one DNA pitch oriented in the z-
direction. The periodic boundary conditions are also used for
the DNA molecule as in previous studies.124,125 Thus, the
DNA molecule is effectively infinitely long. To analyze the
properties of the trained DIS model, we perform 50 ns NVT
simulations after 1 ns equilibration for the pure salt solution
systems. For DNA simulations, we perform a 25 ns NVT
simulation after 1 ns equilibration.

4. RESULTS AND DISCUSSION
4.1. Pure Ionic Aqueous Solutions. In the following, we

compare our developed DIS model with the all-atom model,
which serves as a target reference. Additionally, we show the
results for the prior potential to highlight the inadequacy of
simple classical potentials and the improvement made by the
ML potential.
We first consider the pure sodium chloride solution at four

salt concentrations, 0.15, 0.5, 1.0, and 2.0 mol L−1. We
investigate the structural properties by computing the radial
distribution functions (RDFs) for the three ion−ion
interactions, i.e., Na+−Na+, Na+−Cl−, and Cl−−Cl− (Figure
2). As expected, we observe for all pairs that as concentration
increases, the height of the first RDF’s peak increases with no
shift in the position of the peak. The RDFs for the prior model
exhibit ideal gas characteristics, i.e., a local structure highly
dissimilar from the all-atom reference. With the addition of the
ML potential, the effective ion−ion potentials are corrected
and the RDFs are in agreement. The positions of the peaks are
very well reproduced, while slight differences in the intensity of
the peaks are observed for some RDFs. The differences are
slightly higher at lower concentrations. The number of ions
within the cutoff sphere of the ML potential is small at low

concentrations. In particular, the coordination numbers,
indicating how many ions can be found on average in a
particular range, are shown in Supporting Information Figure
S1. At the physiological salt concentration (0.15 mol L−1), the
coordination numbers are smaller than one within the entire
cutoff sphere. Consequently, these ML models are challenging
to train. For the Na−Cl interaction, at each concentration, the
solvent-separated pair exhibits two configurations at 4.6 and
5.0 Å. These are SSIP configurations already observed on RDF
and confirmed by the calculation of the McMillan−Mayer
potential.126,127 It is due to hydrogen bondings between the
water molecules in the cation’s first coordination shell and the
anion; it is more pronounced for other salts with a higher
constant of association.
CG models are thermodynamically state dependent. In

particular, they are salt concentration dependent. Thus,
developing a transferable salt solution model that would be
accurate at any arbitrary salt concentration is impossible.
Nevertheless, we still expect that the models will be
transferable for small salt concentration changes. We
investigated this aspect by training the model at one specific
concentration and testing it at all four concentrations. The
corresponding RDFs are shown in Supporting Information
Figures S2−S5. We observe a relatively good reproduction of
structural properties for out-of-training salt concentrations.
The exception is the DIS model trained at 0.15 mol L−1 and
employed at the highest 2.0 mol L−1 concentration, where the
results significantly deviate from the all-atom reference. As an
additional test, we train the DIS model with configurations
obtained from all-atom simulations of all concentrations. The
hyperparameters were reoptimized in this case (see Supporting
Information). As expected, the acquired structural properties
(Supporting Information Figure S6) are less accurate than the
models trained at a specific concentration, confirming the
concentration dependency of the potential of the mean force.
In the future, the salt concentration could be added as an
additional input feature of the NN, making the model directly
concentration-dependent. Similar approaches were previously

Figure 3. Cylindrical NDP for Na+ (a) and Cl− (b) from the center-of-mass of the DNA molecule. The results are shown for the all-atom (black),
prior (blue), and DIS (red) simulations at 1.0 mol L−1. The colored areas represent the standard deviation with a block averaging of 1 ns. The
training (solid) and validation (dashed) loss functions as a function of the epochs (c).
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proposed to include the temperature dependency of the CG
models.63 To emphasize the importance of capturing the
many-body term of the PMF, a pure sodium chloride solution
at 5.0 mol kg−1 has been performed following the computa-
tional detail of Shen et al.,83 the detailed results are provided in
the Supporting Information (Section 4.3). The DIS model and
two other implicit models, i.e., the IBI potential76,128 fitted at
5.0 mol kg−1 and the transferable effective potential of the cited
paper.83 The RDFs clearly highlight that addressing high-order
atomistic correlations explicitly is essential for achieving a more
accurate model.
The employed force-matching training strategy can theoret-

ically reproduce all of the structural and thermodynamical
properties of the underlying all-atom model. The dynamic
properties, however, cannot be matched. CG models typically
exhibit faster dynamics due to a smoother potential energy
surface. Indeed, the average self-diffusion coefficient of ions,
calculated via Einstein relation, for the all-atom and the DIS
simulations 1.2 × 10−9 and 6.8 × 10−9 m2 s−1, respectively.
4.2. Periodic DNA in an Ionic Aqueous Solution.

Having validated the DIS model for the aqueous NaCl salt
solution, we introduced a periodic DNA molecule into the
simulation box. The main challenge here is to accurately
describe the ion interactions in different chemical environ-
ments, i.e., near the DNA molecule and bulk media. In the
bulk, atom density is low and only composed of ions. In the
vicinity of the DNA molecule, the density of the particles
significantly increases. To be able to capture the effective
interaction of the ions around the DNA molecule, the
complexity of the atomistic geometry representation is
increased, i.e., the number of Bessel functions, the sizes of

the 2-body network and the high-order tensor are increasing.
The ML potential details are reported in Supporting
Information. We developed a DIS model for two salt
concentrations. In the following, we discuss the 1.0 mol L−1

salt solution. The results at 0.5 mol L−1 salt concentration,
reported in the Supporting Information, show the same
tendency.
First, we calculate the sodium and chloride cylindrical

normalized density profiles (NDPs) from the center of mass of
the DNA molecule (Figure 3). For Na+ ions, we obtain
excellent agreement with all-atom simulations. For Cl− ions,
the density in the vicinity of the DNA molecule is slightly
lower in the DIS model. Nonetheless, the structural properties
are still significantly more accurate compared to the classical
CG models employing explicit solvent modeling.129,130 This
result demonstrates that the ML model can provide an
accurate many-body potential of mean force even with the
reduced DNA representation. Namely, the all-atom model
contains 634 DNA atoms, while the input to the ML model is
based on 120 explicit DNA atoms.
To visualize the ion distribution around the DNA molecule

in 3D, we calculate the likelihood of observing Na+ ions at
every grid point around the DNA molecule using a grid
spacing of 0.5 Å. Despite a few discrepancies, Figure 4 confirms
that the DIS model accurately describes the ion distribution.
We computed the Na+ average occupancy in the first hydration
shell and the associated residence times to further validate this
point (Figure 5). The ion behavior in the DNA molecule’s
backbone, minor, and major grooves is similar regarding the
average occupancy. To enable a comparison between the all-
atom and DIS models, we performed the calculation based on

Figure 4. 3D distribution of Na+ cations around the DNA pitch in a NaCl aqueous solution at 1.0 mol L−1 for the all-atom (a), DIS (b), and the
difference between both simulations (c). The distribution is normalized over the trajectory and the total number of cations. For the sake of clarity,
only the positions with a sufficient probability are represented. The black beads represent the CG resolution of the DNA molecule.

Figure 5. Average occupancy (a) and residence times (b) of Na+ ions in the first hydration shell of the atoms of DNA at 1.0 mol L−1. The error
bars denote the standard deviation. The fast fluctuations (<1 ps) are omitted in the residence time calculation.
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the CG DNA representation110 for both models. We observe a
preferential binding of Na+ ions to the phosphodiester group
and major groove, while the minor groove exhibits low
occupancy. Similar findings were also previously reported.124

On the other hand, the all-atom and DIS models display
differences in the residence times. In particular, the residence
times for the DIS model are lower by an approximately
constant factor of 2.8 for the phosphodiester group and 2.6 for
the major groove. For the Minor groove, the range of values is
between 1 and 9. Due to the faster dynamics of CG models,
lower residence times are expected.129 However, as expected,
the DIS model outperforms the prior model regarding the
average and the standard deviation of the residence times.
Indeed, the prior model gives a good first approximation of the
potential of mean force regarding the average occupancy, but
the local ion configurations around DNA are not described.
Yet, Figures 3 and 5 confirm that the ML potential enables to
description of the stable configurations of the ions in the
vicinity of DNA and correctly approximate the many-body
terms of the PMF.
For a fair comparison of simulation speedup, we run

simulations on one CPU using the all-atom and the DIS
models for two systems: pure salt solution at 0.15 mol L−1 and
the DNA molecule embedded into a salt solution at 0.5 mol
L−1. We use cutoff distances of 0.9 and 1.2 nm for computing
the LJ and the electrostatic interactions, respectively, in both
systems. For the pure salt solution, we obtain 0.5 and 84 ns per
day for the all-atom model and the DIS MD, respectively. For
the system containing the DNA molecule, we obtain 0.1 and
1.5 ns per day. The DIS model is competitive because of its
much lower computational requirements and allows for
simulating long trajectories as well as increasing the size of
the system.

5. CONCLUSIONS
In conclusion, we present a new implicit solvation ML model
of ionic media based on an equivariant graph neural network
approach. Our DIS model showcased excellent accuracy with
respect to the structural properties of aqueous salt solutions
with concentrations ranging from 0.15 to 2.0 mol L−1. The
molecular system including a DNA molecule likewise
confirmed that the model can simultaneously capture the
effective ion interaction in two distinct environments: close to
the DNA molecule and in bulk. This work paves the way for
efficient simulations of ionic media by using an implicit
solvation model. Our approach is general and could be used
with other ML potentials. This will allow us to go beyond the
current size of the system to understand the complex effective
interaction of biomolecules in ionic media.131 We will also
consider other salt solutions with higher valency ions to
understand the impact on the learning process and the
complexity of the neural network.
MD simulations of DNA require an accurate incorporation

of electrostatics into the model. We have used the delta-
learning approach to derive the ML interaction potential where
the prior model captures explicit long-range interactions using
Wolf summation. This represents the main limitation of our
ML model since explicit long-range electrostatics are lacking in
the current model. As this might lead to structural artifacts,
DNA is fixed in this study. This allows us to capture only the
behavior of the ions alone. Nevertheless, such a model could
already be useful to study solid−liquid interfaces,132,133 for
example. Another limitation is the lack of transferability to

other DNA sequences, as the model has been trained on only
one specific DNA sequence and its corresponding fixed
configuration. A cutoff-dependent Allegro potential could
address this issue by using a large cutoff distance for ions
and a shorter one for the DNA atoms and allow the
introduction of a flexible DNA molecule in our model. This
extension would enable the exploration of various CG
mappings and their impact on the PMF in order to enhance
the precision of the latter. An implementation of the prior
model in Allegro’s framework could also be an improvement.
Our future work will focus on extending our model along these
lines.
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Otyepka, M. RNA Structural Dynamics As Captured by Molecular
Simulations: A Comprehensive Overview. Chem. Rev. 2018, 118,
4177−4338.
(2) Calimet, N.; Simoes, M.; Changeux, J.-P.; Karplus, M.; Taly, A.;
Cecchini, M. A gating mechanism of pentameric ligand-gated ion
channels. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, E3987−E3996.
(3) Pokorná, P.; Krepl, M.; Campagne, S.; Šponer, J. Conformational
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Poltavsky, I.; Schütt, K. T.; Tkatchenko, A.; Müller, K. R. Machine
Learning Force Fields. Chem. Rev. 2021, 121, 10142−10186.
(47) Plé, T.; Mauger, N.; Adjoua, O.; Inizan, T. J.; Lagarder̀e, L.;
Huppert, S.; Piquemal, J.-P. Routine Molecular Dynamics Simulations
Including Nuclear Quantum Effects: From Force Fields to Machine
Learning Potentials. J. Chem. Theory Comput. 2023, 19, 1432−1445.
(48) Noe,̂ F.; Tkatchenko, A.; Müller, K.; Clementi, C. Machine
Learning for Molecular Simulation. Annu. Rev. Phys. Chem. 2020, 71,
16.
(49) Reiser, P.; Neubert, M.; Eberhard, A.; Torresi, L.; Zhou, C.;
Shao, C.; Metni, H.; van Hoesel, C.; Schopmans, H.; Sommer, T.;
Friederich, P. Graph neural networks for materials science and
chemistry. Commun. Mater. 2022, 3, 93.
(50) Vandermause, J.; Torrisi, S. B.; Batzner, S.; Xie, Y.; Sun, L.;
Kolpak, A. M.; Kozinsky, B. On-the-fly active learning of interpretable
Bayesian force fields for atomistic rare events. npj Comput. Mater.
2020, 6, 20.
(51) Musaelian, A.; Batzner, S.; Johansson, A.; Sun, L.; Owen, C. J.;
Kornbluth, M.; Kozinsky, B. Learning local equivariant representa-
tions for large-scale atomistic dynamics. Nat. Commun. 2023, 14, 579.
(52) Batzner, S.; Musaelian, A.; Sun, L.; Geiger, M.; Mailoa, J. P.;
Kornbluth, M.; Molinari, N.; Smidt, T. E.; Kozinsky, B. E. (3)-
equivariant graph neural networks for data-efficient and accurate
interatomic potentials. Nat. Commun. 2022, 13, 2453.
(53) Ko, T. W.; Finkler, J. A.; Goedecker, S.; Behler, J. A fourth-
generation high-dimensional neural network potential with accurate
electrostatics including non-local charge transfer. Nat. Commun. 2021,
12, 398.
(54) Plé, T.; Lagarder̀e, L.; Piquemal, J.-P. Force-field-enhanced
neural network interactions: from local equivariant embedding to
atom-in-molecule properties and long-range effects. Chem. Sci. 2023,
14, 12554−12569.
(55) Unke, O. T.; Chmiela, S.; Gastegger, M.; Schuett, K. T.;
Sauceda, H. E.; Mueller, K.-R. SpookyNet: Learning force fields with
electronic degrees of freedom and nonlocal effects. Nat. Commun.
2021, 12, 7273.
(56) Zhang, L.; Han, J.; Wang, H.; Car, R. E. W.; E, W. DeePCG:
Constructing coarse-grained models via deep neural networks. J.
Chem. Phys. 2018, 149, 034101.
(57) Thaler, S.; Zavadlav, J. Learning neural network potentials from
experimental data via Differentiable Trajectory Reweighting. Nat.
Commun. 2021, 12, 6884.
(58) Husic, B. E.; Charron, N. E.; Lemm, D.; Wang, J.; Pérez, A.;
Majewski, M.; Krämer, A.; Chen, Y.; Olsson, S.; de Fabritiis, G.; Noé,

F.; Clementi, C. Coarse graining molecular dynamics with graph
neural networks. J. Chem. Phys. 2020, 153, 194101.
(59) Chen, Y.; Krämer, A.; Charron, N. E.; Husic, B. E.; Clementi,
C.; Noé, F. Machine learning implicit solvation for molecular
dynamics. J. Chem. Phys. 2021, 155, 084101.
(60) Durumeric, A. E.; Charron, N. E.; Templeton, C.; Musil, F.;
Bonneau, K.; Pasos-Trejo, A. S.; Chen, Y.; Kelkar, A.; Noé, F.;
Clementi, C. Machine learned coarse-grained protein force-fields: Are
we there yet? Curr. Opin. Struct. Biol. 2023, 79, 102533.
(61) Katzberger, P.; Riniker, S. Implicit solvent approach based on
generalized Born and transferable graph neural networks for
molecular dynamics simulations. J. Chem. Phys. 2023, 158, 204101.
(62) Thaler, S.; Stupp, M.; Zavadlav, J. Deep Coarse-grained
Potentials via Relative Entropy Minimization. J. Chem. Phys. 2022,
157, 244103.
(63) Thaler, S.; Doehner, G.; Zavadlav, J. Scalable Bayesian
Uncertainty Quantification for Neural Network Potentials: Promise
and Pitfalls. J. Chem. Theory Comput. 2023, 19, 4520−4532.
(64) Krämer, A.; Durumeric, A. E. P.; Charron, N. E.; Chen, Y.;
Clementi, C.; Noé, F. Statistically Optimal Force Aggregation for
Coarse-Graining Molecular Dynamics. J. Phys. Chem. Lett. 2023, 14,
3970−3979.
(65) Vlachas, P. R.; Zavadlav, J.; Praprotnik, M.; Koumoutsakos, P.
Accelerated Simulations of Molecular Systems through Learning of
Effective Dynamics. J. Chem. Theory Comput. 2022, 18, 538−549.
(66) Wang, S.; Ma, Z.; Pan, W. Data-Driven Coarse-Grained
Modeling of Non-Equilibrium Systems. Soft Matter 2021, 17, 6404−
6412.
(67) del Razo, M. J.; Crommelin, D.; Bolhuis, P. G. Data-Driven
Dynamical Coarse-Graining for Condensed Matter Systems. arXiv
2023, arXiv:2306.17672 DOI: 10.48550/arXiv.2306.17672. preprint
(68) Draper, D. E.; Grilley, D.; Soto, A. M. Ions and RNA Folding.
Annu. Rev. Biophys. 2005, 34, 221−243.
(69) Fingerhut, B. P. The mutual interactions of RNA, counterions
and water − quantifying the electrostatics at the phosphate−water
interface. Chem. Commun. 2021, 57, 12880−12897.
(70) Nguyen, H. T.; Hori, N.; Thirumalai, D. Theory and
simulations for RNA folding in mixtures of monovalent and divalent
cations. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 21022−21030.
(71) Hellström, M.; Behler, J. Structure of aqueous NaOH solutions:
insights from neural-network-based molecular dynamics simulations.
Phys. Chem. Chem. Phys. 2017, 19, 82−96.
(72) Hellström, M.; Ceriotti, M.; Behler, J. Nuclear Quantum Effects
in Sodium Hydroxide Solutions from Neural Network Molecular
Dynamics Simulations. J. Phys. Chem. B 2018, 122, 10158−10171.
(73) Schran, C.; Thiemann, F. L.; Rowe, P.; Müller, E. A.; Marsalek,
O.; Michaelides, A. Machine learning potentials for complex aqueous
systems made simple. Proc. Natl. Acad. Sci. U.S.A. 2021, 118,
No. e2110077118.
(74) Shao, Y.; Hellström, M.; Yllö, A.; Mindemark, J.; Hermansson,
K.; Behler, J.; Zhang, C. Temperature effects on the ionic conductivity
in concentrated alkaline electrolyte solutions. Phys. Chem. Chem. Phys.
2020, 22, 10426−10430.
(75) Zhang, J.; Pagotto, J.; Duignan, T. T. Towards predictive design
of electrolyte solutions by accelerating ab initio simulation with neural
networks. J. Mater. Chem. A 2022, 10, 19560−19571.
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