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S1 Müller-Brown Potential

The MBP has the form

V (x) =
4∑

k=1

Ak exp
(
αk(x1 − X̂1,k)+

bk(x1 − X̂1,k)(x2 − X̂2,k)+

ck(x2 − X̂2,k)
)
,

(S1)
where x = [x1, x2]

T is the position. The
parametrization

α = [−1,−1,−6.5, 0.7]T ,

b = [0, 0, 11, 0.6]T ,

c = [−10,−10,−6.5, 0.7]T ,

A = [−200,−100,−170, 15]T ,

X̂ =

[
1 0 −0.5 −1
0 0.5 1.5 1

]
,

(S2)

is followed according to Ref.1

S1.1 Definition of Metastable
States

The metastable states of the MB potential are
defined as ellipses in the x ∈ R2 space. The
centers and axes given in Table S1.

Table S1: Metastable states in the MBP mod-
eled as ellipses x21/α

2 + x22/β
2 ≤ 1. The ellipses

are rotated by θ.

State Center (x1, x2) Axes α, β) θ

0 (−0.57, 1.45) (0.15, 0.3) π/4
1 (0.45, 0.05) (0.35, 0.15) 0

S1.2 LED Hyperparameters

In order to prepare the dataset for training, val-
idation, and testing of the LED in the MBP,
96 initial conditions are sampled from x ∈
[−1.5, 1.2]× [−0.2, 2]. The dynamics are solved
with the Velocity Verlet algorithm, with time-
step δt = 10−2 up to T = 5000, after an initial
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transient period of T̃ = 103 discarded from the
data. The data are sub-sampled to ∆t = 0.5,
keeping every 50th data point. In this way, 96
trajectories of N = 104 samples, each corre-
sponding to T = 5000 time units are created.
LED is trained on 32 of these trajectories. 32
trajectories are used for validation, while all 96
trajectories are used for testing.

The number and size of hidden layers are the
same for the encoder E , the decoder D, and the
latent MDN Z. In the first phase, the MDN-AE
is trained, tuning its hyperparameters based on
a grid search reported in Table S2. The autoen-
coder with the smallest error on the state statis-
tics on the validation dataset is picked. Next,
the MDN-LSTM is trained, tuning its hyper-
parameters based on a grid search reported in
Table S3. The LED model with the smallest
error on the state statistics on the validation
dataset is picked. Both networks are trained
with validation based early stopping. The LED
is tested on the total 96 initial conditions. For
more information of the training technicalities
the interested reader is referred to Ref.2

Table S2: Hyperparameter tuning of AE for
MBP

Hyperparameter Values

Batch size 32
Initial learning rate 0.001
Weight decay rate {0, 10−5}

Number of AE layers {2, 3}
Size of AE layers {10, 20, 40}

Activation of AE layers selu, tanh
Latent dimension {1}

Input/Output data scaling [0, 1]
MDN-AE kernels {2, 3}

MDN-AE hidden units 50
MDN-AE multivariate 1

MDN-AE covariance scaling factor {0.4, 0.6, 0.8}

S1.3 Marginal State Distribu-
tions

The marginal distributions of the MBP states
from trajectories sampled from the LED is com-
pared with the groundtruth (test data) in Fig-
ure S1.

Table S3: Hyperparameter tuning of LSTM for
MBP

Hyperparameter Values

Batch size 32
Initial learning rate 10−3

BPTT sequence length {200, 400}
Number of LSTM layers 1

Size of LSTM layers {10, 20, 40}
Activation of LSTM Cell tanh

MDN-LSTM kernels {4, 5, 6}
MDN-LSTM hidden units {10, 20}
MDN-LSTM multivariate 0

MDN-LSTM covariance scaling factor {0.1, 0.2, 0.3, 0.4}

Table S4: Hyperparameters of LED model with
lowest validation error on MBP

Hyperparameter Values

Number of AE layers 3
Size of AE layers 40

Activation of AE layers tanh
Latent dimension 1
MDN-AE kernels 3

MDN-AE hidden units 50
MDN-AE multivariate 1

MDN-AE covariance scaling factor 0.6
Weight decay rate 0.0

BPTT sequence length 400
Number of LSTM layers 1

Size of LSTM layers 20
Activation of LSTM Cell tanh

MDN-LSTM kernels 4
MDN-LSTM hidden units 20
MDN-LSTM multivariate 0

MDN-LSTM covariance scaling factor 0.4
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Figure S1: Comparison of the marginal distributions of the MBP states x1 and x2 between the test
data and trajectories of LED. The LED is propagating the dynamics on a one dimensional reduced
order latent state, i.e., dz = 1.

S1.4 Time-scales in the LED La-
tent Space

The latent space learned by LED can be uti-
lized to identify low-energy metastable states
without the need for prior knowledge. The def-
inition of the metastable states in the rotation-
ally and translationally invariant space consti-
tutes such prior knowledge. Minima in the free
energy projection on the LED latent space, con-
stitute probable metastable states.

The trajectories sampled with LED are clus-
tered based on these latent metastable clusters
depicted in Figure 4 (main text). An MSM is
fitted on the clustered trajectories. The time-
lag of the MSM is set to 100 time units to en-
sure Markovianity. The timescales computed
by MSM are T 0→1 = 49 and T 1→0 = 321.
LED is overestimating T 1→0 and underestimat-
ing T 0→1. The order of the timescales, how-
ever, is captured. In contrast, an MSM with
a time-lag of ∆t = 0.5, which is the timestep
of the LED, fails to capture the order of the
timescales due to the violated Markovianity as-
sumption (T 0→1 = 3 and T 0→1 = 21).
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S2 Trp Cage

S2.1 LED Hyperparameters

In the LED architecture, the number and size
of hidden layers are the same for the encoder
E , the decoder D, and the latent MDN Z. The
MDN-AE is trained, tuning its hyperparame-
ters based on the grid search reported in Ta-
ble S5. The latent space of the MDN-AE is
z ∈ R2, i.e., dz = 2. The MDN-AE model with
the lowest error on the state statistics in the val-
idation dataset is picked. Then, the MDN-AE
is coupled with the MDN-LSTM as LED. The
MDN-LSTM is trained to minimize the latent
data likelihood. The hyperparameters of the
MDN-LSTM are tuned according to the grid
search reported in Table S6. The LED model
with the lowest error on the state statistics in
the validation dataset is selected. Its hyperpa-
rameters are reported in Table S7. The LED is
tested in 248 initial conditions randomly sam-
pled from the testing data. Starting from these
initial conditions, we utilize the iterative propa-
gation in the latent space of the LED to forecast
T = 400ps.

Table S5: Hyperparameter tuning of AE for Trp
Cage

Hyperparameter Values

Batch size 32
Initial learning rate 10−3

Weight decay rate {0, 10−4, 10−5, 10−6}
Number of AE layers {4, 6}

Size of AE layers {100, 200, 500}
Activation of AE layers selu, tanh

Latent dimension 2
Input/Output data scaling [0, 1]

MDN-AE kernels {3, 4, 5}
MDN-AE hidden units {20, 50}

MDN-AE covariance scaling factor 0.8

S2.2 Marginal State Distribu-
tions

The marginal distributions of the trajectories
generated by LED match the ground-truth ones
(MD data) closely, as depicted in Figure S2.
In Figure S3, a sample from MD data of the
TRP cage is compared with a close sample (in

Table S6: Hyperparameter tuning of LSTM for
Trp Cage

Hyperparameter Values

Batch size 32
Initial learning rate 10−3

BPTT sequence length {200, 400}
Number of LSTM layers 1

Size of LSTM layers {10, 20, 40}
Activation of LSTM Cell tanh

MDN-LSTM kernels {4, 8, 12, 24}
MDN-LSTM hidden units {10, 20, 40, 80}
MDN-LSTM multivariate {0, 1}

MDN-LSTM covariance scaling factor {0.1, 0.2, 0.3, 0.4}

Table S7: Hyperparameters of LED model with
lowest validation error on Trp Cage

Hyperparameter Values

Number of AE layers 6
Size of AE layers 500

Activation of AE layers tanh
Latent dimension 2
MDN-AE kernels 5

MDN-AE hidden units 50
MDN-AE multivariate 0

MDN-AE covariance scaling factor 0.8
Weight decay rate 0

BPTT sequence length 400
Number of LSTM layers 1

Size of LSTM layers 40
Activation of LSTM Cell tanh

MDN-LSTM kernels 4
MDN-LSTM hidden units 20
MDN-LSTM multivariate 0

MDN-LSTM covariance scaling factor 0.2
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Figure S2: Plot of the marginal state distributions s351 − s375 in the Trp Cage miniprotein. Com-
parison of the state distributions estimated from the MD data (test dataset) and from trajectories
sampled from LED.

terms of the latent space) of LED. The RMSD
is 2.784Å.
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MD DATA

RMSD ≈ 2.784

LED

Figure S3: Trp Cage protein configurations found in the MD data compared to a sample of LED
that is is in close proximity in the latent space. The RMSD error between the two configurations
is 2.784Å.
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S3 Alanine Dipeptide

A molecule of alanine dipeptide in water is sim-
ulated with MD.3 The peptide is modeled with
the AMBER03 force field,4 while the water is
modeled with TIP3P/Fs.5 The Velocity Verlet
algorithm is employed for the integration. The
simulation domain is a cubic box (edge length
2.7 nm) with periodic boundary conditions and
minimum image convention. The temperature
is maintained at 298 K with a local Langevin
thermostat,6 with the value of the friction con-
stant equal to 1.0/ps. The cutoff distance for
the nonbonded interactions is rc = 0.9 nm. The
reaction field method7 is used for the electro-
static interaction beyond the cutoff, with the di-
electric permittivity of inner and outer regions
equal to 1 and 80, respectively.

A timestep of δt = 1fs is considered, and the
dynamics are integrated up to a total time of
T = 100ns, creating a dataset with a total of
108 data samples. The data are subsampled,
keeping every 100th datapoint, creating a tra-
jectory with N = 106 samples. The coarse
time-step of LED is thus ∆t = 0.1ps. The pro-
tein positions are transformed into rototransla-
tional invariant features (internal coordinates),
composed of bonds, angles, and dihedral an-
gles. The data are split to 248 trajectories of
4000 samples (each trajectory corresponds to
T = 400ps of MD data), discarding the remain-
ing data. The first 96 trajectories (correspond-
ing to a total of 38.4ns of MD data) are used
for training and the next 96 trajectories for val-
idation. All 248 initial conditions are used for
testing.

S3.1 Metastable State Definition

The protein is considered to lie in each of the
five metastable states {C5, PII , αR, αL, C

ax
7 } if

the distance in the Ramachandran plot between
the protein state and the metastable state cen-
ter is smaller than 10 degrees. The metastable
state centers are defined in Table S8.

Table S8: Centers of the metastable states in
the Ramachandran plot.

Metastable state Center (φ, ψ)

PII (−75, 150)
C5 (−155, 155)
αR (−75,−20)
αL (67, 5)
Cax

7 (70, 160)

S3.2 LED Hyperparameters

Regarding the LED architecture, the number
and size of hidden layers are the same for the
encoder E , the decoder D, and the latent MDN
Z. The MDN-AE is trained, tuning its hyper-
parameters based on the grid search reported in
Table S9. The latent space of the MDN-AE is
z ∈ R2, i.e., dz = 1. The MDN-AE model with
the lowest validation error on the state statistics
is picked. Then, the MDN-AE is coupled with
the MDN-LSTM in LED. The MDN-LSTM is
trained to minimize the latent data likelihood.
The hyperparameters of the MDN-LSTM are
tuned according to the grid search reported in
Table S10. The LED model with the lowest
error on the state statistics in the validation
dataset is selected. Its hyperparameters are re-
ported in Table S11. The LED is tested in 248
initial conditions randomly sampled from the
testing data. Starting from these initial condi-
tions, we utilize the iterative propagation in the
latent space of the LED to forecast T = 400ps.

Table S9: Hyperparameter tuning of AE for ala-
nine dipeptide

Hyperparameter Values

Batch size 32
Initial learning rate 10−3

Weight decay rate {0, 10−5}
Number of AE layers {4, 6}

Size of AE layers {50, 100}
Activation of AE layers selu, tanh

Latent dimension 2
Input/Output data scaling [0, 1]

MDN-AE kernels 5
MDN-AE hidden units {20, 50}
MDN-AE multivariate 0

MDN-AE covariance scaling factor 0.8
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Table S10: Hyperparameter tuning of LSTM
for alanine dipeptide

Hyperparameter Values

Batch size 32
Initial learning rate 10−3

BPTT sequence length {200, 400}
Number of LSTM layers 1

Size of LSTM layers {10, 20, 40}
Activation of LSTM Cell tanh

MDN-LSTM kernels {4, 5, 6}
MDN-LSTM hidden units {10, 20}
MDN-LSTM multivariate {0, 1}

MDN-LSTM covariance scaling factor {0.1, 0.2, 0.3, 0.4}

Table S11: Hyperparameters of LED model
with lowest validation error on alanine dipep-
tide

Hyperparameter Values

Number of AE layers 4
Size of AE layers 50

Activation of AE layers tanh
Latent dimension 2
MDN-AE kernels 5

MDN-AE hidden units 50
MDN-AE multivariate 0

MDN-AE covariance scaling factor 0.8
Weight decay rate 0

BPTT sequence length 400
Number of LSTM layers 1

Size of LSTM layers 20
Activation of LSTM Cell tanh

MDN-LSTM kernels 5
MDN-LSTM hidden units 20
MDN-LSTM multivariate 0

MDN-LSTM covariance scaling factor 0.4

S3.3 Marginal State Distribu-
tions

The marginal distributions of the trajectories
generated by LED match the ground-truth ones
(MD data) closely, as depicted in Figure S4.
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Figure S4: Plot of the marginal state distributions. Comparison of the state distributions estimated
from the MD data (test dataset) and from trajectories sampled from LED.
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In Figure S5, a configuration randomly sam-
pled from MD data is given for each metastable
state. The closest configuration sampled from
LED is compared with the MD data sample
in terms of the Root Mean Square Deviation
(RMSD) score. The LED samples realistic
configurations with low RMSD errors for all
metastable states. The mean and standard
deviation of the RMSD scores of the 10 clos-
est neighbors sampled from LED are µ ± σ =
0.148± 0.021Å for the C5 MD sample configu-
ration (Figure S5 top left). This score for the
rest of the metastable states is 0.340 ± 0.463Å
for PII , 0.101± 0.019Å for αR, 0.885± 0.162Å
for αL, and 0.383 ± 0.125Å for Cax

7 . The
LED samples similar configurations with low
RMSD scores for the most frequently observed
metastable states {C5, PII , αR}. The average
RMSD error is slightly higher and fluctuates
more for the less frequently observed {αR, C

ax
7 }.

S3.4 Metastable States on the
Latent Space and Mean
First Passage Times

The metastable states can be defined on the
latent space of LED, by projecting the free en-
ergy on the latent space, and identifying the
local minima. This alleviates the need for ex-
pert knowledge (definition of the metastable
states). The MFPTs between the metastable
states on the latent space of the LED are
compared with the MFPTs between the corre-
sponding metastable states on the Ramachad-
ran space in Table S12. Note that the results
depend on how the latent metastable states are
defined. However, in order to capture the order
of the timescales without the need of prior ex-
pert knowledge, a rough approximation (small
region around the minima in the latent space) is
adequate. The LED is able to capture the order
of the timescales, alleviating the need for expert
knowledge on the definition of the metastable
states.
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Figure S5: For each metastable state, a random alanine dipeptide configuration sampled from MD
data is compared against the closest configuration sampled from the LED with dz = 1. The Root
Mean Square Deviation (RMSD) in Å between the two is plotted for reference.

Table S12: Mean first-passage times (MFPT) between the metastable states of alanine dipeptide in
water in [ns]. MFPTs are estimated by fitting MSMs with a time-lag of 10ps on MD trajectories.
In LED, the metastable states are considered as regions around the local minima of the free energy
projection on the latent space. The average relative error is given for reference.

Metastable states on Metastable states on
Ramachandran Space LED Latent Space

MFPT
MSM− 10ps MSM− 10ps MSM− 10ps
on MD data on LED− 0.1ps data on LED− 0.1ps data

[ns] Reference MFPT Error (%) MFPT Error (%)

TC5→PII
0.105 0.103 2 0.143 36

TC5→αR
0.104 0.082 21 0.124 19

TPII→C5
0.226 0.242 7 0.356 57

TPII→αR
0.105 0.083 21 0.123 18

TαR→C5 0.236 0.258 9 0.361 53
TαR→PII

0.116 0.119 2 0.148 27

Average Relative Error 10.51% 35.21%
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